Year 2013 Vol. 21 No 4

EXPERIMENTAL SURGERY

A.V. HLUTKIN

OXYGEN-TRANSPORT FUNCTION OF BLOOD AND FREE RADICAL PROCESSES AT EXPERIMENTAL MODELING OF THE THERMAL BURN

EE “Grodno State Medical University”,
The Republic of Belarus

Objectives. To evaluate oxygen-transport function of the blood and free radical processes after thermal skin injury in an infant rat model.
Methods. The study was conducted on outbred albino infant rats (55-65 g weight, 30 days age, n=54). Thermal injury of the skin was modeled by hot liquid (water) impact at temperature of 99-100°C using a specially designed device within 10 seconds (the zone of injury was about 8-9% of the body surface). The blood gas parameters as well as hemoglobin affinity for oxygen were determined according to p50 (pO2 at 50% saturation of hemoglobin by oxygen). The sampling of tissues (lung, liver, kidney and heart) was performed to study lipid peroxidation (conjugated dienes, malondialdehyde) and antioxidant protection (α-tocopherol, catalase) in the tissues too. Determination of nitrate/nitrite concentration in the blood plasma was carried out using Griess reagent.
Results. Thermal injury in rats (30 days) leads to hypoxia based on the symptoms of metabolic acidosis and reduction of the pO2 and SO2 values as well as elevation of hemoglobin affinity for oxygen within the first 14 days and then return them to the primary values. In this case the oxidative stress has developed and its manifestation reduced to the 21st days. Also one observes an increase of nitrate/nitrite concentration, reflecting the dysfunction of L-arginine-NO system, causing changes of blood oxygen binding properties and forming prooxidant-antioxidant imbalance.
Conclusions. The conducted studies testify to an important role of the oxygen-dependent processes in the thermal injury pathogenesis which is necessary to take into consideration in developing of appropriate measures to eliminate this pathology.

Keywords: thermal burn, oxygen, blood, radical, antioxidant, nitric oxide
p. 16 – 24 of the original issue
References
  1. Sakharov SP, Ivanov VV, Shen' NP, Suchkov DV, Shen' NP. Letal'nye iskhody ozhogovoi bolezni u detei: 18-letnii opyt raboty [Lethal outcomes of burn disease in children: a 18-year experience]. Skoraia Med Pomoshch'. 2011;(3):52–57.
  2. Artem'ev SA, Kamzalakova NI, Bulygin GV. Soderzhanie lipidov syvorotki krovi pri obshirnykh ozhogakh u detei raznogo vozrasta [The blood serum lipid concentration in extensive burns in different aged children]. Biul Sib Meditsiny. 2008;7(4):93–98.
  3. Ushakova TA. K voprosu o perekisnom okislenii lipidov u bol'nykh s ozhogovoi travmoi. Kombustiologiia [Some aspects of lipid peroxidation in patients with burn injury]. [Elektronnyi resurs]. 2008;(2). Rezhim dostupa: http://burn.ru.
  4. Glutkin AV, Koval'chuk TV, Koval'chuk VI. Ustroistvo dlia modelirovaniia ozhogovoi rany u laboratornogo zhivotnogo [A device for a burn wound modeling in laboratory animals]: patent 7927 Resp Belarus'; zaiavitel' Grodn. gos. med. un-t; ¹ u 20110576; zaiavl. 15.07.11; opubl. 28.02.12. Af³tsyiny Biul. 2012;(1):256.
  5. Gilpin DA. Calculation of a new Meeh constant and experimental determination of burn size. Burns. 1996 Dec;22(8):607–11.
  6. Glutkin AV, Koval'chuk TV, Koval'chuk VI. Predokhranitel'naia kamera dlia eksperimental'nogo issledovaniia ozhogovoi rany u laboratornogo zhivotnogo [A safety camera for the pilot study of burn wounds in laboratory animals]: patent 7926 Resp Belarus'; zaiavitel' Grodn. gos. med. un-t; ¹ u 20110577; zaiavl. 15.07.11; opubl. 28.02.12. Af³tsyiny Biul. 2012;(1):256–57.
  7. Severinghaus JW. Blood gas calculator. J Appl Physiol. 1966 May;21(3):1108–16.
  8. Gavrilov VB, Mishkorudnaia MI. Spektrofotometricheskoe opredelenie soderzhaniia gidroperekisei lipidov v plazme krovi [The spectrophotometric determination of lipid hydroperoxide in blood plasma]. Lab Delo. 1983;(3):33–36.
  9. Kamyshnikov VS. Spravochnik po kliniko-biokhimicheskoi laboratornoi diagnostike [A handbook of clinical and biochemical laboratory diagnostics]: v 2 t. 2-e izd. Minsk, RB: Belarus'; 2002;1. 465 p.
  10. Taylor SL, Lamden MP, Tappel AL. Sensitive fluorometric method for tissue tocopherol analysis. Lipids. 1976 Jul;11(7):530–38.
  11. Koroliuk MA, Ivanova AI, Maiorova IG, Tokarev VE. Metod opredeleniia aktivnosti katalazy [The method for determining the catalase activity]. Lab Delo. 1988;(1):16–19.
  12. Bryan NS, Grisham MB. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med. 2007 Sep 1;43(5):645–57.
  13. Tarasov AE. Vliianie «tinrostima» na perekisnoe okislenie lipidov i antioksidantnuiu sistemu pri ozhogovoi bolezni v eksperimente [The influence of tinrostim on lipid peroxidation and antioxidant system in experimental burn]. Sovrem Naukoemkie Tekhnologii. 2005;(8):72.
  14. Pol³karpova GV. Por³vnial'ne vivchennia dinam³ki perekisnogo okislennia l³p³d³v ta antioksidantno¿ sistemi pri op³kakh r³zno¿ prirodi [A comparative study of the dynamics of lipid peroxidation and antioxidant system in burns of different nature]. V³sn Khark³v Nats Un-tu ³m VN Karaz³na. Ser b³olog³ia. 2009;10(878):40–47.
  15. Zinchuk VV. Kislorodsviazyvaiushchie svoistva krovi [Blood oxygen binding properties]. Lap Lambert Academic Publishing; 2012. 167 p.
  16. Zviagintseva TV, Krivoshapka AV, Zhelnin EV. Rol' metabolitov oksida azota v mekhanizmakh razvitiia eksperimental'nogo ozhoga [The role of nitric oxide in the mechanisms of experimental burns]. Eksperim i Klin Meditsina. 2011;(2):5–9.
Address for correspondence:
210009, Respublika Belarus', g. Grodno, ul. Gor'kogo, d. 80, UO «Grodnenskii gosudarstvennyi meditsinskii universitet», kafedra detskoi khirurgii,
e-mail: glutkinalex@mail.ru,
Glutkin Aleksandr Viktorovich
Information about the authors:
Hlutkin A.V. A post-graduate student of the pediatric surgery chair of EE “Grodno State Medical University”.
Contacts | ©Vitebsk State Medical University, 2007-2023