Novosti
|
This journal is indexed in Scopus |
---|
Year 2019 Vol. 27 No 2
REVIEWS
S.A. SUSHKOU, E.I. LEBEDEVA, O.D. MYADELETS
PERICYTES AS A POTENTIAL SOURCE OF NEOANGIOGENESIS
Vitebsk State Medical University, Vitebsk,
The Republic of Belarus
The scientific literature analysis has shown that researchers in the field of regenerative medicine consider pericytes to be a promising therapeutic target. However, there are still too many problems that require thorough investigations. One of the main tasks is the identification of pericytes. Despite numerous attempts, the molecular marker panel remains undeveloped. All markers which are used to identify pericytes are dynamic in their expression. This may be related to the stages of pericyte differentiation, peculiarities of the tissue structure, the pathological state, the hierarchy of the vessels and the stage of their development. The identification of the source of pericyte development and understanding of the processes governing their differentiation remain the problem of current interest. The mechanism of pericyte differentiation into myofibroblasts, osteoblasts, adipocytes, chondrocytes, smooth myocytes and macrophages remains insufficiently studied and debatable. There is no consensus about pericyte heterogeneity. This is the subject of further research aimed at proving pericyte heterogeneity in terms of morphology and function along the blood vessels; quantitative determination of differences in the expression of markers in different pericyte subtypes and the development of the nomenclature. The determination of phenotypic differences between pericytes during angiogenesis and in mature vessels is of particular interest. This is necessary to understand the functions of pericytes in the microvasculature. An important direction is the detailed study of signaling pathways involved in the regulation of complex interactions between pericytes and endothelial cells. This will not only expand the understanding of the pathogenesis, but also will allow introducing new methods of treatment into practical medicine.
- Armulik A, Genovе G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev. Cell 2011 Aug;21(2):193-15. doi: 10.1016/j.devcel.2011.07.001
- Berthiaume AA, Hartmann DA, Majesky MW, Bhat NR, Shih AY. Pericyte structural remodeling in cerebrovascular health and homeostasis. Front Aging Neurosci. 2018 Jul;10:210. doi: 10.3389/fnagi.2018.00210
- Hartmann DA, Underly RG, Grant RI, Watson AN, Lindner V, Shih AY. Pericyte structure and distribution in the cerebral cortex revealed by high-resolution imaging of transgenic mice. Neurophotonics. 2015 Oct;2(4):041402. doi: 10.1117/1.NPh.2.4.041402
- Klein D. The tumor vascular endothelium as decision maker in cancer therapy. Front Oncol. 2018 Sep;8:367. doi: 10.3389/fonc.2018.00367
- Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci. 2018 Mar 9;25(1):21. doi: 10.1186/s12929-018-0423-7
- Thomas HM, Cowin AJ, Mills1 SJ. The importance of pericytes in healing: wounds and other pathologies. Int J Mol Sci. 2017 Jun;18(6):1129. Published online 2017 May 24. doi: 10.3390/ijms18061129
- Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A. 2011 Apr 19;108(16):6503-8. doi: 10.1073/pnas.1015449108
- Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res. 2014 Sep 1;103(4):438-51. doi: 10.1093/cvr/cvu168
- Mao Y, Liu X, Song Y, Zhai C, Zhang L. VEGF-A/VEGFR-2 and FGF-2/FGFR-1 but not PDGF-BB/PDGFR-β play important roles in promoting immature and inflammatory intraplaque angiogenesis. PLoS One. 2018 Aug 20;13(8):e0201395. doi: 10.1371/journal.pone.0201395
- Schrimpf C, Koppen T, Duffield JS, Bоer U, David S, Ziegler W, Haverich A, Teebken OE, Wilhelmi M. TIMP3 is regulated by pericytes upon shear stress detection leading to modified endothelial cell response. Eur J Vasc Endovasc Surg. 2017 Oct;54(4):524-33. doi: 10.1016/j.ejvs.2017.07.002
- Murray IR, Baily JE, Chen WCW, Dar A, Gonzalez ZN, Jensen AR, Petrigliano FA, Deb A, Henderson NC.. Skeletal and cardiac muscle pericytes: functions and therapeutic potential. Pharmacol Ther. 2017 Mar;171:65-74. doi: 10.1016/j.pharmthera.2016.09.005
- Kumar A, D’Souza SS, Moskvin OV, Toh H, Wang B, Zhang J, Swanson S, Guo LW, Thomson JA, Slukvin II. Specification and diversification of pericytes and smooth muscle cells from mesenchymoangioblasts. Cell Rep. 2017 May 30;19(9):1902-16. doi: 10.1016/j
- Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, Corada M, Dejana E, Zhou B, Adams RH. Endothelial cells are progenitors of cardiac pericytes and vascular smoothmuscle cells. Nat Commun. 2016 Aug 12;7:12422. doi: 10.1038/ncomms12422
- Díaz-Flores L, Gutiеrrez R, Madrid JF, Varela H, Valladares F, Acosta E, Martín-Vasallo P, Díaz-Flores LJr. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009 Jul;24(7):909-69. doi: 10.14670/HH-24.909
- Navarro P, Ruco L, Dejana E. Differential localization of VE- and N-cadherins in human endothelial cells: VE-cadherin competes with N-cadherin for junctional localization. J Cell Biol. 1998 Mar 23;140(6):1475-84. doi: 10.1083/jcb.140.6.1475
- Ivanova EA, Orekhov AN. Cellular model of atherogenesis based on pluripotent vascular wall pericytes. Stem Cells Int. 2016;2016:7321404. doi: 10.1155/2016/7321404
- Crislip GR, O’Connor PM, Wei Q, Sullivan JC. Vasa recta pericyte density is negatively associated with vascular congestion in the renal medulla following ischemia reperfusion in rats. Am J Physiol Renal Physiol. 2017 Nov 1;313(5): F1097-F1105. doi: 10.1152/ajprenal.00261.2017
- Tedesco FS, Dellavalle A, Diaz-Manera J, Messina G, Cossu G. Repairing skeletal muscle: regenerative potential of skeletal muscle stem cells. J Clin Invest. 2010 Jan;120(1):11-19. doi: 10.1172/JCI40373
- Goodall EF, Wang C, Simpson JE, Baker DJ, Drew DR, Heath PR, Saffrey MJ, Romero IA, Wharton SB. Age-associated changes in the blood-brain barrier: comparative studies in human and mouse. Neuropathol Appl Neurobiol. 2018 Apr;44(3):328-40. doi: 10.1111/nan.12408
- Chung YR, Choi JA, Koh JY, Yoon YH. Ursodeoxycholic acid attenuates endoplasmic reticulum stress-related retinal pericyte loss in streptozotocin-induced diabetic mice. J Diabetes Res. 2017;2017:1763292. doi: 10.1155/2017/1763292
- Yamazaki T, Mukouyama YS. Tissue specific origin, development, and pathological perspectives of pericytes. Front Cardiovasc Med. 2018 Jun 27;5:78. doi: 10.3389/fcvm.2018.00078
- Birbrair A, Borges IDT, Gilson Sena IF, Almeida GG, da Silva Meirelles L, GonÇalves R, Mintz A, Delbono O. How plastic are pericytes? Stem Cells Dev. 2017 Jul 15;26(14):1013-19. doi: 10.1089/scd.2017.0044
- Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T. What is a pericyte? J Cereb Blood Flow Metab. 2016 Feb;36(2):451-55. doi: 10.1177/0271678X15610340
- Esteves CL, Donadeu FX. Pericytes and their potential in regenerative medicine across species. Cytometry A. 2018 Jan;93(1):50-59. doi: 10.1002/cyto.a.23243
- Tian X, Brookes O, Battaglia G. Pericytes from mesenchymal stem cells as a model for the blood-brain barrier. Sci Rep. 2017 Jan;7:39676. doi: 10.1038/srep39676
- Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy? Angiogenesis. 2017 May;20(2):185-204. doi: 10.1007/s10456-017-9552-y
- Dias Moura Prazeres PH, Sena IFG, Borges IDT, de Azevedo PO, Andreotti JP, de Paiva AE, de Almeida VM, de Paula Guerra DA, Pinheiro Dos Santos GS, Mintz A, Delbono O, Birbrair A. Pericytes are heterogeneous in their origin within the same tissue. Dev Biol. 2017 Jul 1;427(1):6-11. doi: 10.1016/j.ydbio.2017.05.001
- Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017 Feb 7;8(1):28. doi: 10.1186/s13287-017-0479-4
- Birbrair A, Zhang T, Files DC, Mannava S, Smith T, Wang ZM, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther. 2014 Nov 6;5(6):122. doi: 10.1186/scrt512
- Krishna Priya S, Nagare RP, Sneha VS, Sidhanth C, Bindhya S, Manasa P, Ganesan TS. Tumour angiogenesis-origin of blood vessels. Int J Cancer. 2016 Aug 15;139(4):729-35. doi: 10.1002/ijc.30067
- Harrell CR, Simovic Markovic B, Fellabaum C, Arsenijevic A, Djonov V, Volarevic V. Molecular mechanisms underlying therapeutic potential of pericytes. J Biomed Sci. 2018 Mar 9;25(1):21. doi: 10.1186/s12929-018-0423-7
- Onogi Y, Wada T, Kamiya C, Inata K, Matsuzawa T, Inaba Y, Kimura K, Inoue H, Yamamoto S, Ishii Y, Koya D, Tsuneki H, Sasahara M, Sasaoka T. PDGFRβ Regulates Adipose Tissue expansion and glucose metabolism via vascular remodeling in diet-induced obesity. Diabetes. 2017 Apr;66(4):1008-21. doi: 10.2337/db16-0881
- Park DY, Lee J, Kim J, Kim K, Hong S, Han S, Kubota Y, Augustin HG, Ding L, Kim JW, Kim H, He Y, Adams RH, Koh GY. Plastic roles of pericytes in the blood-retinal barrier. Nat Commun. 2017 May 16;8:15296. doi: 10.1038/ncomms15296
- Kuzmanov A, Hopfer U, Marti P, Meyer-Schaller N, Yilmaz M, Christofori G. LIM-homeobox gene 2 promotes tumor growth and metastasis by inducing autocrine and paracrine PDGF-B signaling. Mol Oncol. 2014 Mar;8(2):401-16. doi: 10.1016/j.molonc.2013.12.009
- Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, Lin PC. Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood. 2006 Aug 15;108(4):1260-66. doi: 10.1182/blood-2005-09-012807
- He C, Lv X, Hua G, Lele SM, Remmenga S, Dong J, Davis JS, Wang C. YAP forms autocrine loops with the ERBB pathway to regulate ovarian cancer initiation and progression. Oncogene. 2015 Dec 10;34(50):6040-54. doi: 10.1038/onc.2015.52
- Miyagawa S, Katsu Y, Watanabe H, Iguchi T. Estrogen-independent activation of erbBs signaling and estrogen receptor alpha in the mouse vagina exposed neonatally to diethylstilbestrol. Oncogene. 2004 Jan 15;23(2):340-49. doi: 10.1038/sj.onc.1207207
- Qin G, Chen Y, Li H, Xu S, Li Y, Sun J, Rao W, Chen C, Du M, He K, Ye Y. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model. Mol Med Rep. 2016 Jul;14(1):57-68. doi: 10.3892/mmr.2016.5215
- Lee J, Marrero L, Yu L, Dawson LA, Muneoka K, Han M. SDF-1α/CXCR4 signaling mediates digit tip regeneration promoted by BMP-2. Dev Biol. 2013 Oct 1;382(1):98-109. doi: 10.1016/j.ydbio.2013.07.020
- Tang F, Guo S, Liao H, Yu P, Wang L, Song X, Chen J, Yang Q. Resveratrol enhances neurite outgrowth and synaptogenesis via sonic hedgehog signaling following oxygen-glucose deprivation/reoxygenation injury. Send to Cell Physiol Biochem. 2017;43(2):852-69. doi: 10.1159/000481611
- Yamazaki T, Nalbandian A, Uchida Y, Li W, Arnold TD, Kubota Y, Yamamoto S, Ema M, Mukouyama YS. Tissue myeloid progenitors differentiate into pericytes through TGF-β signaling in developing skin vasculature. Cell Rep. 2017 Mar 21;18(12):2991-04. doi: 10.1016/j
- Sweeney MD, Ayyadurai S, Zlokovic BV. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci. 2016 May 26;19(6):771-83. doi: 10.1038/nn.4288
- Lipphardt M, Song JW, Matsumoto K, Dadafarin S, Dihazi H, Müller G, Goligorsky MS. The third path of tubulointerstitial fibrosis: aberrant endothelial secretome. Kidney Int. 2017 Sep;92(3):558-68. doi: 10.1016/j.kint.2017.02.033
- Leaf IA, Nakagawa S, Johnson BG, Cha JJ, Mittelsteadt K, Guckian KM, Gomez IG, Altemeier WA, Duffield JS. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J Clin Invest. 2017 Jan 3;127(1):321-34. doi: 10.1172/JCI87532
- Jackson S, ElAli A, Virgintino D, Gilbert MR. Blood-brain barrier pericyte importance in malignant gliomas: what we can learn from stroke and Alzheimer’s disease. Neuro Oncol. 2017 Sep 1;19(9):1173-82. doi: 10.1093/neuonc/nox058
- Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai M. Glioblastoma: microenvironment and niche concept. Cancers (Basel). 2018 Dec 20;11(1). pii: E5. doi: 10.3390/cancers11010005
- Kusuhara S, Fukushima Y, Ogura S, Inoue N, Uemura A. Pathophysiology of diabetic retinopathy: the old and the new. Diabetes Metab J. 2018 Oct;42(5):364-76. doi: 10.4093/dmj.2018.0182
- Wang Y, Xu J, Chang L, Meyers CA, Zhang L, Broderick K, Lee M, Peault B, James AW. Relative contributions of adipose-resident CD146+ pericytes and CD34+ adventitial progenitor cells in bone tissue engineering. NPJ Regen Med. 2019 Jan 7;4:1. doi: 10.1038/s41536-018-0063-2
- Panina YA, Yakimov AS, Komleva YK, Morgun AV, Lopatina OL, Malinovskaya NA, Shuvaev AN, Salmin VV, Taranushenko TE, Salmina AB. Plasticity of adipose tissue-derived stem cells and regulation of angiogenesis. Front Physiol. 2018 Nov 26;9:1656. doi: 10.3389/fphys.2018.01656
- Lerman DA, Diaz M, Peault B. Changes in coexpression of pericytes and endogenous cardiac progenitor cells from heart development to disease state. Eur Heart J. 2018 Aug 28;39(Suppl 1). pii: P1850. doi: 10.1093/eurheartj/ehy565.P1850
210009, The Republic of Belarus,
Vitebsk, Frunze Ave., 27,
Vitebsk State Medical University,
Department of Histology,
Cytology and Embryology.
Tel. mob.: + 375 33 675 76 99,
e-mail: lebedeva.ya-elenale2013@yandex.ru,
Elena I. Lebedeva
Sushkou Siarhei A., PhD, Associate Professor, Vice-rector of Scientific and Research Affairs, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
http://orcid.org/0000-0002-7524-6182
Lebedeva Elena I., PhD, Associate Professor of the Department of Histology, Cytology and Embryology, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0003-1309-4248
Myadelets Oleg D., MD, Professor, Head of the Department of Histology, Cytology and Embryology, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0002-6781-5584