Year 2014 Vol. 22 No 4




EE Vitebsk State Medical University,
The Republic of Belarus

This article aims to review the recent literature on topic of the molecular genetic diagnosis of some malignant solid tumors. Possibilities of polymerase chain reaction (PCR) to identify the various tumor-associated genes have been determined. The characteristics, localization, functions of series genes, such as tyrosinase gene (TYR), survivin (BIRC5), epidermal growth factor (ErbB-2/HER2-Neu), as well as "housekeeping" genes (GAPDH, 18S rRNA) are presented. Their clinical importance, prognostic significance in different types of malignant tumors such as melanoma, breast cancer, lung cancer, ovarian cancer, colon cancer, etc have been determined. The study of these genes is considered to be one of diagnostic option of minimal residual disease in the case of opportunity to reveal the progression of neoplastic process at the stage of single tumor cells presence. The polymerase chain reaction (PCR) can be used to identify the specific genes directly in tumor tissue obtained at biopsy and in treated tumor cells. The tumor-associated genes disseminated in the peripheral blood is able to identify a number of tumors. The researches aimed at studying of the expression of tumor-associated genes are considered to be promising and relevant to customize treatment (surgery, neo- and adjuvant drug therapy) of patients suffering from malignant tumors.

Keywords: cancer, tumor marker, genetic diagnosis
p. 481 487 of the original issue
  1. Smoliakova RM. Molekuliarno-geneticheskie metody issledovaniia v onkologii [Molecular genetic methods of study in oncology]. Onkol Zhurn. 2011;5(4):3741.
  2. Barton DE, Kwon BS, Francke U. Human tyrosinase gene, mapped to chromosome 11 (q14-q21), defines second region of homology with mouse chromosome 7. Genomics. 1988 Jul;3(1):1724.
  3. Kwon BS, Haq AK, Pomerantz SH, Halaban R. Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc Natl Acad Sci USA. 1987 Nov;84(21):747377.
  4. Theos AC, Tenza D, Martina JA, Hurbain I, Peden AA, Sviderskaya EV, Stewart A, Robinson MS, Bennett DC, Cutler DF, Bonifacino JS, Marks MS, Raposo G. Functions of adaptor protein (AP)-3 and AP-1 in tyrosinase sorting from endosomes to melanosomes. Mol Biol Cell. 2005 Nov;16(11):535672.
  5. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol [serial on the Internet] 2002 Jun 18;3(7). Available from:
  6. Altieri DC. Molecular cloning of effector cell protease receptor-1, a novel cell surface receptor for the protease factor Xa. J Biol Chem. 1994 Feb 4;269(5):313942.
  7. Altieri DC. Splicing of effector cell protease receptor-1 mRNA is modulated by an unusual retained intron. Biochemistry. 1994 Nov 22;33(46):1384855.
  8. Sah NK, Khan Z, Khan GJ, Bisen PS.Structural, functional and therapeutic biology of survivin. Cancer Lett. 2006 Dec 8;244(2):16471.
  9. Olie RA, Simoes-Wust AP, Baumann B, Leech SH, Fabbro D, Stahel RA, Zangemeister-Wittke U.A novel antisense oligonucleotide targeting survivin expression induces apoptosis and sensitizes lung cancer cells to chemotherapy. Cancer Res. 2000 Jun 1;60(11):28059.
  10. Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC.IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res. 1998 Dec 1;58(23):531520.
  11. Ambrosini G, Adida C, Altieri DC.A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997 Aug;3(8):91721.
  12. Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G Cell death by mitotic catastrophe: a molecular definition. Oncogene. 2004 Apr 12;23(16):282537.
  13. Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S, Wen SF, Wang L, Kirschmeier P, Bishop WR, Nielsen LL, Pickett CB, Liu S.Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene. 2002 Apr 18;21(17):261322.
  14. Friedrichs B, Siegel S, Andersen MH, Schmitz N, Zeis M.Survivin-derived peptide epitopes and their role for induction of antitumor immunity in hematological malignancies. Leuk Lymphoma. 2006 Jun;47(6):97885.
  15. Lu J, Tan M, Huang WC, Li P, Guo H, Tseng LM, Su XH, Yang WT, Treekitkarnmongkol W, Andreeff M, Symmans F, Yu D. Mitotic deregulation by survivin in ErbB2-overexpressing breast cancer cells contributes to Taxol resistance. Clin Cancer Res. 2009 Feb 15;15(4):132634.
  16. Mitri Z, Constantine T, O'Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract [serial on the Internet]. 2012. Available from:
  17. Olayioye MA. Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res. 2001;3(6):38589.
  18. Burstein HJ. The distinctive nature of HER2-positive breast cancers. N Engl J Med. 2005 Oct 20;353(16):165254.
  19. Tan M, Yu D. Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol. 2007;608:11929.
  20. Santin AD, Bellone S, Roman JJ, McKenney JK, Pecorelli S.Trastuzumab treatment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu. Int J Gynaecol Obstet. 2008 Aug;102(2):12831.
  21. Nagy P, Jenei A, Kirsch AK, Szollosi J, Damjanovich S, Jovin TM.Activation-dependent clustering of the erbB2 receptor tyrosine kinase detected by scanning near-field optical microscopy. J Cell Sci. 1999 Jun;112 ( Pt 11):173341.
  22. Le XF, Pruefer F, Bast RC Jr.HER2-targeting antibodies modulate the cyclin-dependent kinase inhibitor p27Kip1 via multiple signaling pathways. Cell Cycle. 2005 Jan;4(1):8795.
  23. Roy V, Perez EA.Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer. Oncologist. 2009 Nov;14(11):106169.
  24. Telli ML, Hunt SA, Carlson RW, Guardino AE.Trastuzumab-related cardiotoxicity: calling into question the concept of reversibility. J Clin Oncol. 2007 Aug 10;25(23):352533.
  25. Ali SM, Carney WP, Esteva FJ, Fornier M, Harris L, Kostler WJ, Lotz JP, Luftner D, Pichon MF, Lipton A.Serum HER-2/neu and relative resistance to trastuzumab-based therapy in patients with metastatic breast cancer. Cancer. 2008 Sep 15;113(6):1294301.
  26. Tarze A, Deniaud A, Le Bras M, Maillier E, Molle D, Larochette N, Zamzami N, Jan G, Kroemer G, Brenner C. GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene. 2007 Apr 19;26(18):260620.
  27. Zheng L, Roeder RG, Luo Y. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell. 2003;114(2):25566.
  28. Hara MR, Agrawal N, Kim SF, Cascio MB, Fujimuro M, Ozeki Y, Takahashi M, Cheah JH, Tankou SK, Hester LD, Ferris CD, Hayward SD, Snyder SH, Sawa A.S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol. 2005 Jul;7(7):66574.
  29. Agarwal AR, Zhao L, Sancheti H, Sundar IK, Rahman I, Cadenas E.Short-term cigarette smoke exposure induces reversible changes in energy metabolism and cellular redox status independent of inflammatory responses in mouse lungs. Am J Physiol Lung Cell Mol Physiol. 2012 Nov 15;303(10):L88998.
  30. Tisdale EJ, Artalejo CR. A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events. Traffic. 2007 Jun;8(6):73341.
  31. Colell A, Ricci JE, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR.GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell. 2007 Jun 1;129(5):98397.
  32. Huang TC, Chang HY, Hsu CH, Kuo WH, Chang KJ, Juan HF.Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. J Proteome Res. 2008 Apr;7(4):143344.
  33. Chen G, Wang C, Shi T. Overview of available methods for diverse RNA-Seq data analyses. Sci. China Life Sci. 2011;(54):112128.
  34. Raposo G, Stoorvogel W.Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013 Feb 18;200(4):37383.
  35. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO.Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 Jun;9(6):65459.
  36. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F.Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.
  37. Taylor DD, Homesley HD, Doellgast GJ. "Membrane-associated" immunoglobulins in cyst and ascites fluids of ovarian cancer patients. Am J Reprod Immunol. 1983 Jan-Feb;3(1):711
  38. King HW, Michael MZ, Gleadle JM.Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012 Sep 24;12:421.
  39. Silva J, Garcia V, Rodriguez M, Compte M, Cisneros E, Veguillas P, Garcia JM, Dominguez G, Campos-Martin Y, Cuevas J, Pena C, Herrera M, Diaz R, Mohammed N, Bonilla F. Analysis of exosome release and its prognostic value in human colorectal cancer. Genes Chromosomes Cancer. 2012 Apr;51(4):40918.
  40. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Sampson JH, Mitchell DA, Bigner DD. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J. 2009 May;23(5):154157.
  41. Escrevente C, Keller S, Altevogt P, Costa J.Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 2011 Mar 27;11:108.
  42. Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, Clayton A. Can urinary exosomes act as treatment response markers in prostate cancer? J Transl Med. 2009 Jan 12;7:4.
  43. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009 Jan;10(1):426.
  44. Welton JL, Khanna S, Giles PJ, Brennan P, Brewis IA, Staffurth J, Mason MD, Clayton A. Proteomics analysis of bladder cancer exosomes. Mol Cell Proteomics. 2010 Jun;9(6):132438.
  45. Al-Nedawi K, Meehan B, Rak J.Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009 Jul 1;8(13):201418.
  46. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, D'Souza-Schorey C. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009 Dec 1;19(22):187585.
  47. Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011 Jun 1;71(11):3792801.
  48. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008 Dec;10(12):147076.
Address for correspondence:
210023, Respublika Belarus, g. Vitebsk, pr. Frunze, d. 27, UO Vitebskiy gosudarstvennyiy meditsinskiy universitet, kafedra onkologii s kursami LD, LT, FPK i PK,
Shlyakhtunov Evgeniy
Information about the authors:
Shlyyakhtunov E.A. PhD, an associate professor of oncology chair with the courses of RD, RT, the retraining and advanced training faculty of EE Vitebsk State Medical University.
Semenov V.M. MD, professor, a dean of the medical faculty of EE Vitebsk State Medical University.
Contacts | ©Vitebsk State Medical University, 2007-2023