Year 2023 Vol. 31 No 2

SCIENTIFIC PUBLICATIONS

A.I. DOVNAR

LONG-TERM RESULTS OF CRANIOPLASTY USING BELARUSIAN COMPOSITE MATERIAL IN THE EXPERIMENT

Grodno State Medical University, Grodno, Republic of Belarus

Objectives. To study the possibility of using the Belarusian composite material «Superfluvis» as a means of replacing the bone tissue of the skull in an experiment.
Material and Methods. To study the possibility of using the Belarusian composite material «Superfluvis» as a means of replacing the bone tissue of the skull in an experiment. The study was carried out on 18 mongrel rabbits of both sexes, homogeneous in weight and age. Rabbits underwent experimental trepanation of the skull with its plastic closure with the material «Superfluvis» (group «experience-1»), titanium (group «control») and without closing the trepanation defect (group «experience-2»). The animals were removed 180 days after the operation. Before removal, venous blood was taken to study the indicators of biochemical blood analysis and the mass of animals was measured. During the autopsy, the mass coefficients of the internal organs were calculated and a histological study of the internal organs, as well as the brain and its membranes, was carried out.
Results. Analysis of the results of biochemical analysis of rabbit blood showed a statistically significant low AST level on 180 days after surgery in the «experience-1» group relative to the «control» groups (p<0.05) and «experience-2» (p<0.05). At the same time, there is no statistically significant decrease in the AST index in the «experience-1» group on 180 days after surgery with preoperative values. There is a tendency to increase glucose levels 180 days after surgery to preoperative values in the group «experience-2» (p=0.08). Statistically significant differences in other indicators of the same name of biochemical blood analysis in the studied groups were not found in these terms. Calculations of the mass coefficients of the heart, lung, right and left kidney, spleen and thymus in all the studied groups of animals did not reveal statistically significant differences between the groups of rabbits. However, there was a significant increase in the liver mass coefficient in rabbits in the «control» group in comparison with the «experiment-1» group (p=0.022). There was no statistically significant increase in the mass coefficient of the liver between the groups of animals «control» and «experiment-2».
Conclusion. The composite material «Superfluvis» does not have a toxic effect on the vital organs of the experimental animal with prolonged use (180 days).

Keywords: composite material, skull defect, titanium, mass coefficient, rabbits
p. 89-97 of the original issue
References
  1. Kravchuk AD, Potapov AA, Lihterman LB, Eropkin SV. Posttravmaticheskie defekty cherepa: klinicheskoe rukovodstvo po cherepno-mozgovoj travme. Moskva, RF; 2002. 144–160 ð.
  2. Alibhai MK, Balasundaram I, Bridle C, Holmes SB. Is there a therapeutic role for cranioplasty? Int J Oral Maxillofac Surg. 2013 May;42(5):559-61. doi: 10.1016/j.ijom.2013.01.001
  3. Servadei F, Iaccarino C. The therapeutic cranioplasty still needs an ideal material and surgical timing. World Neurosurg. 2015 Feb;83(2):133-5. doi: 10.1016/j.wneu.2014.08.031
  4. Stiver SI. Complications of decompressive craniectomy for traumatic brain injury. Neurosurg Focus. 2009 Jun;26(6):E7. doi: 10.3171/2009.4.FOCUS0965.
  5. Zanotti B, Zingaretti N, Verlicchi A, Robiony M, Alfieri A, Parodi PC. Cranioplasty: Review of Materials. J Craniofac Surg. 2016 Nov;27(8):2061-2072. doi: 10.1097/SCS.0000000000003025
  6. Textor M, Downes S. Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts. J Biomed Mater Res. 2001 Jun 15;55(4):475-86. doi: 10.1002/1097-4636(20010615)55:4<475::aid-jbm1039>3.0.co;2-q
  7. Bonfield CM, Kumar AR, Gerszten PC. The history of military cranioplasty. Neurosurg Focus. 2014 Apr;36(4):E18. doi: 10.3171/2014.1.FOCUS13504
  8. Harris DA, Fong AJ, Buchanan EP, Monson L, Khechoyan D, Lam S. History of synthetic materials in alloplastic cranioplasty. Neurosurg Focus. 2014 Apr;36(4):E20. doi: 10.3171/2014.2.FOCUS13560.
  9. Chochaeva AM, Belimgotov BH. Kranioplastika autokost’yu cherepa pri cherepno-mozgovoj travme. Saint-Petersburg, RF; 2007. 122-125 p.
  10. Spetzger U, Vougioukas V, Schipper J. Materials and techniques for osseous skull reconstruction. Minim Invasive Ther Allied Technol. 2010 Apr;19(2):110-21. doi: 10.3109/13645701003644087.
  11. Williams L, Fan K, Bentley R. Titanium cranioplasty in children and adolescents. J Craniomaxillofac Surg. 2016 Jul;44(7):789-94. doi: 10.1016/j.jcms.2016.03.01.
  12. Lee SC, Wu CT, Lee ST, Chen PJ. Cranioplasty using polymethyl methacrylate prostheses. J Clin Neurosci. 2009 Jan;16(1):56-63. doi: 10.1016/j.jocn.2008.04.001
  13. Chai YC, Bolander J, Papantoniou I, Patterson J, Vleugels J, Schrooten J, Luyten FP. Harnessing the osteogenicity of in vitro stem cell-derived mineralized extracellular matrix as 3D biotemplate to guide bone regeneration. Tissue Eng Part A. 2017 Sep;23(17-18):874-890. doi: 10.1089/ten.tea.2016.0432
  14. Shelestova VA, Grakovich PN, Danchenko SG. Kompozit superfluvis i ego primenenie v uzlah treniya. Voprosy materialovedeniya. 2012;4(72):210?216.
Address for correspondence:
230009, Republic of Belarus,
Grodno, Gorky Str., 80,
Grodno State Medical University,
the Department of Neurology
and Neurosurgery,
tel. +375 297 890265,
e-mail: dovnarneiro@gmail.com,
Dovnar Àndrei I.
Information about the authors:
Dovnar Andrei I., Assistant of the Department of the Department of Neurology and Neurosurgery, Grodno State Medical University, Grodno, Republic of Belarus.
http://orcid.org/0000-0001-5535-2036

A.A. KINZERSKIY 1, 2, M.S. KORZHUK 3, 4, V.T. DOLGIKH 5, T.S. SOLOV’YOVA 6, R.V. ESELEVICH 4, O.V. BALURA 4, I.I. KOTOV 2

EFFECT OF PATHOGENETIC THERAPY ON COAGULOPATHY AFTER SEVERE LIVER INJURY

Omsk City Emergency Hospital N1 1,
Omsk STATE MEDICAL UNIVERsity 2, Omsk,
NMRC of Oncology named after N.N.Petrov of MoH of Russia,
St. Petersburg, The Russian Federation 3,
Military Medical Academy named after S.M.Kirov, of MoD of Russia 4,
Federal Scientific Center of Reanimatology and Rehabilitology of Russian Academy of Science 5,
St. Petersburg clinic hospital of Russian Academy of Science 6, St. Petersburg,
Russian Federation

Objective. Effect of pathogenetic therapy (PGT) and the methods of administration of its components on developing coagulopathy in the author’s model of severe closed liver injury has been studied..
Methods. Male Wistar rats (n=100) weighing 379±23 g were randomized into 3 groups: I – control (n=42), II – experimental (n=34), III - donors (n=24). The injury was modeled according to the author’s technique. The experimental group at the 60th minute after injury was randomized into 3 subgroups: II-I (n=12) – injection of PGT into the femoral vein, II-II (n=12) – injection of PGT into the portal vein, II-III (n= 10) – without PGT. PGT components: tranexamic acid solution 100 mg/kg (0.8 ml), native plasma (2 ml) and platelet rich plasma (2 ml). The rate of introduction of the mixture is 0.5 ml/min. The general and biochemical blood tests, coagulogram, parameters of low-frequency piezothromboelastography and piezoaggregatometry were studied.
Results. PGT suppresses hyperfibrinolysis at the 10th (p=0.012), 30th minute (p=0.032) after reaching the maximum thrombus density, stabilizes the levels of: protein C (p=0.14), antithrombin-III (p=1), constants of anticoagulant activity (p=0.29), fibrinogen (p=0.1), coagulation drive intensity (p=0.25), thrombin activity (p=0.65), platelet count (p=0.38), their retractions (p=1) and aggregations (p=0.058), APTT (p=0.29), despite the progression of multiple organ failure and traumatic shock (need for infusion, increase in lactate (p=0.00000036) up to the 140th minute). The effects of PGT on coagulopathy when injected into the portal vein and into the femoral vein do not differ (p=0.7). The hepatoprotective effect of PGT was found: the levels of AST (p=0.58) and ALT (p=1), bilirubin (p=1), total protein are stable (p=1), with increasing renal failure: creatinine (p=0.0042 ) and urea (p=0.049).
Conclusion. PGT, including a solution of tranexamic acid, native plasma and platelet-rich plasma, suppresses coagulopathy after severe closed liver injury in the experiment, both with the introduction of components into the femoral vein and into the portal vein, and has a hepatoprotective effect

Keywords: liver trauma, blood plasma, Wistar rats, coagulopathy, low-frequency piezothromboelastography, low-frequency piezoaggregatometry
p. 98-116 of the original issue
References
  1. Afifi I, Abayazeed S, El-Menyar A, Abdelrahman H, Peralta R, Al-Thani H. Blunt liver trauma: a descriptive analysis from a level I trauma center. BMC Surg. 2018 Jun 19;18(1):42. doi: 10.1186/s12893-018-0369-4
  2. Doklestić K, Djukić V, Ivančević N, Gregorić P, Lončar Z, Stefanović B, Jovanović D, Karamarković A. Severe blunt hepatic trauma in polytrauma patient - management and outcome. Srp Arh Celok Lek. 2015 Jul-Aug;143(7-8):416-22. doi: 10.2298/sarh1508416d
  3. Heuer M, Taeger G, Kaiser GM, Nast-Kolb D, Kuehne CA, Ruchholtz S, Lefering R, Paul A, Lendemans S; Trauma Registry of the DGU. Prognostic factors of liver injury in polytraumatic patients. Results from 895 severe abdominal trauma cases. J Gastrointestin Liver Dis [Electronic resource]. 2009 Jun [cited 2023 Mar 23];18(2):197-203. Available from: https://www.jgld.ro/jgld/index.php/jgld/article/view/2009.2.11/1030
  4. Spahn DR, Bouillon B, Cerny V, Duranteau J, Filipescu D, Hunt BJ, Komadina R, Maegele M, Nardi G, Riddez L, Samama CM, Vincent JL, Rossaint R. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care. 2019 Mar 27;23(1):98. doi: 10.1186/s13054-019-2347-3
  5. Kornblith LZ, Moore HB, Cohen MJ. Trauma-Induced Coagulopathy: The Past, Present, and Future. J Thromb Haemost. J Thromb Haemost. 2019 Jun;17(6):852-62. doi: 10.1111/jth.14450
  6. Moore EE, Moore HB, Kornblith LZ, Neal MD, Hoffman M, Mutch NJ, Schöchl H, Hunt BJ, Sauaia A. Trauma-induced coagulopathy. Nat Rev Dis Primers. 2021 Apr 29;7(1):30. doi: 10.1038/s41572-021-002.64-3
  7. Wu X, Darlington DN, Cap AP. Procoagulant and fibrinolytic activity after polytrauma in rat. Am J Physiol Regul Integr Comp Physiol. 2016 Feb 15; 310(4):R323-R29. doi: 10.1152/ajpregu.00401.2015
  8. Kinzerskii AA, Korzhuk MS, Dolgikh VT, Kinzerskaia DA, Romanenko SV. Model’ zakrytoi tupoi tiazheloi travmy pecheni s koagulopatiei u melkikh laboratornykh zhivotnykh. Patent RU 2674379. 2018 Dek 7.(In Russ.)
  9. Kinzerskii AA, Korzhuk MS, Dolgikh VT. Sposob lecheniia tiazheloi travmy pecheni s posttravmaticheskoi koagulopatiei. Patent RU 2639422. 2017 Dek 12 (In Russ.)
  10. Lee HB, Blaufox MD. Blood volume in the rat J Nucl Med [Electronic resource]. 1985 Jan [cited 2023 Mar 23];26(1):72-66. Available from: https://jnm.snmjournals.org/content/26/1/72
  11. Dolgikh VT, Korshunov AP, Zolotov AN, Koniaeva TP, Evpak EV. Ustroistvo dlia gemorragicheskoi gipotenzii u melkikh laboratornykh zhivotnykh. Patent RU 49442. 2005 Noiab 27.(In Russ.)
  12. Kinzerskii AA, Dolgikh VT, Korzhuk MS. Sposob vypolneniia nizkochastotnoi p’ezotromboelastografii u melkikh laboratornykh zhivotnykh. Patent RU 2634567. 2017 Okt 31.(IN Russ.)
  13. Kinzerskii AA, Dolgikh VT, Korzhuk MS. Sposob otsenki funktsii trombotsitov v tsel’noi tsitratnoi krovi: Patent RU 2659421. 2018 Iiul’ 2. (In Russ.)
  14. Kinzerskii AA, Petrova IuA, Korzhuk MS, Dolgikh VT. Normal’nye znacheniia obshchego, biokhimicheskogo analiza krovi i koagulogrammy krys-samtsov linii Wistar. Svidetel’stvo o gos reg bazy dannykh RU 2017620486. 2017 Mai 2. (In Russ.)
  15. Kinzerskii AA, Korzhuk MS, Dolgikh VT. Ustroistvo dlia modelirovaniia tupoi travmy pecheni u melkikh laboratornykh zhivotnykh po mekhanizmu «Udar». Patent RU 163861. 2016 Avg 10.(In Russ.)
  16. Cox JM, Kalns JE. Development and characterization of a rat model of nonpenetrating liver trauma. Comp Med. 2010 Jun; 60(3):218-24.
  17. Kinzerskii AA, Dolgikh VT, Korzhuk MS, Kinzerskaia DA, Zaitseva VE. Osobennosti sistemy gemostaza krysy linii Wistar, vazhnye dlia eksperimental’noi khirurgi. Vestn Eksperim i Klin Khirurgii. 2018;11(2):126-33. doi: 10.18499/2070-478x-2018-11-2-126-133 (In Russ)
  18. Kinzerskii AA, Dolgikh VT, Korzhuk MS, Kinzerskaia DA, Romanenko SV. Effect of Hemodilution in vitro and in vivo on the Hemostatic System Obshch Reanimatologiia. 2021;17(4):44-64. doi: 10.15360/1813-9779-2021-4-1-5 (In Russ)
  19. Wada T, Shiraishi A, Gando S, Yamakawa K, Fujishima S, Saitoh D, Kushimoto S, Ogura H, Abe T, Mayumi T, Sasaki J, Kotani J, Takeyama N, Tsuruta R, Takuma K, Yamashita N, Shiraishi SI, Ikeda H, Shiino Y, Tarui T, Nakada TA, Hifumi T, Okamoto K, Sakamoto Y, Hagiwara A, Masuno T, Ueyama M, Fujimi S, Umemura Y, Otomo Y. Disseminated intravascular coagulation immediately after trauma predicts a poor prognosis in severely injured patients. Sci Rep. 2021 May 26;11(1):11031. doi: 10.1038/s41598-021-90492-0
  20. Chernousov AF, Khorobrykh TV, Pastukhov DV. Laparoskopicheskaia obrabotka travmaticheskikh povrezhdenii pecheni u bol’nykh s tiazheloi sochetannoi travmoi Vestnik khirurgicheskoi gastroenterologii [Elektronnyi resurs]. 2008 [data obrashcheniia: 2023 Mart 23];(1):37-40. http://vidar.ru/Article.asp?fid=VSG_2008_1_37 (In Russ.)
  21. Moore HB, Moore EE. Temporal Changes in Fibrinolysis following Injury. Semin Thromb Hemost. 2020 Mar;46(2):189-98. doi: 10.1055/s-0039-1701016
  22. Huebner BR, Moore EE, Moore HB, Gonzalez E, Kelher M R, Sauaia A, Banerjee A, Silliman CC. Thrombin stimulates increased plasminogen activator inhibitor-1 release from liver compared to lung endothelium. J Surg Res. 2018 May; 225:1-5. doi: 10.1016/j.jss.2017.12.017
  23. Gonzalez E, Moore EE, Moore HB. Management of Trauma-Induced Coagulopathy with Thrombelastography. Crit Care Clin. 2017 Jan;33(1):119-134. doi: 10.1016/j.ccc.2016.09.002
  24. Kutcher ME, Ferguson AR, Cohen MJ. A principal component analysis of coagulation after trauma. J Trauma Acute Care Surg. 2013 May;74(5):1223-9; discussion 1229-30. doi: 10.1097/TA.0b013e31828b7fa1
  25. Cohen MJ, Kutcher M, Redick B, Nelson M, Call M, Knudson MM, Schreiber MA, Bulger EM, Muskat P, Alarcon LH, Myers JG, Rahbar MH, Brasel KJ, Phelan HA, del Junco DJ, Fox EE, Wade CE, Holcomb JB, Cotton BA, Matijevic N. Ñlinical and mechanistic drivers of acute traumatic coagulopathy. J Trauma Acute Care Surg. 2013 Jul;75(1 Suppl 1):S40-47. doi: 10.1097/TA.0b013e31828fa43d
  26. Wada T, Shiraishi A, Gando S, Kabata D, Yamakawa K, Fujishima S, Saitoh D, Kushimoto S, Ogura H, Abe T, Mayumi T, Otomo Y. Association of antithrombin with development of trauma-induced disseminated intravascular coagulation and outcomes. Front Immunol. 2022 Dec 9;13:1026163. doi: 10.3389/fimmu.2022.1026163
  27. Moore HB, Moore EE, Morton AP, Gonzalez E, Fragoso M, Chapma MP, Dzieciatkowska M, Hansen KC, Banerjee A, Sauaia A, CC Silliman. Shock-induced systemic hyperfibrinolysis is attenuated by plasma first resuscitation. J Trauma Acute Care Surg. 2015 Dec; 79(6):897-904. doi: 10.1097/TA.0000000000000792
  28. Kleinveld DJB, Wirtz MR, Brink van den DP, Maas MAW, Roelofs JJTH, Goslings JC, Hollmann MW, Juffermans NP. Use of a high platelet-to-RBC ratio of 2:1 is more effective in correcting trauma-induced coagulopathy than a ratio of 1:1 in a rat multiple trauma transfusion model. Intensive Care Med Exp. 2019 Jul 25;7(Suppl 1):42. doi: 10.1186/s40635-019-0242-5
  29. Dyer MR, Hickman DA, Luc N, Haldeman S, Loughran P, Pawlwoski C, Gupta AS, Neal MD. Intravenous administration of synthetic platelets (SynthoPlate) in a mouse liver injury model of uncontrolled hemorrhage improves hemostasis. J Trauma Acute Care Surg. 2018 Jun; 84(6): 917-23. doi: 10.1097/TA.0000000000001893
  30. Joseph BC, Miyazawa BY, Esmon CT, Cohen MJ, Drygalski A, Mosnier LO. An engineered activated factor V for the prevention and treatment of acute traumatic coagulopathy and bleeding in mice. Blood Adv. 2022 Feb 8;6(3):959-69. doi: 10.1182/bloodadvances.2021005257
  31. Shah NM, Chong SE, Yusoff SM, Mazlan MZ, Johan KB, Azman N, Lim JA, Mohamad SM, Noordin SS, Ghaffar ZA, Hassan MH, Zabidi MA, Rahim NAA. Recombinant activated factor VII (rFVIIa) in refractory haemorrhage for non-haemophiliacs: an eleven-year single-centre experience. BMC Hematol. 2018 Nov 23;18:34. doi: 10.1186/s12878-018-0126-z
  32. Peng HT, Nascimento B, Rhind SG, da Luz L, Beckett A. Evaluation of trauma-induced coagulopathy in the fibrinogen in the initial resuscitation of severe trauma trial. Transfusion. 2021 Jul;61(Suppl 1):S49-S57. doi: 10.1111/trf.16488
  33. Moore EE, Moore HB, Chapman MP, Gonzalez E, Sauaia A. Goal-directed hemostatic resuscitation for trauma induced coagulopathy: maintaining homeostasis. J Trauma Acute Care Surg. 2018 Jun;84(6S Suppl 1):S35-S40. doi: 10.1097/TA.0000000000001797
  34. Tzeng W-J, Tseng H-Y, Hou T-Y, Chou S-E, Su W-T, Hsu S-Y, Hsieh C-H. From death triad to death tetrad-the addition of a hypotension component to the death triad improves mortality risk stratification in trauma patients: a retrospective cohort study. Diagnostics (Basel). 2022 Nov 21;12(11):2885. doi: 10.3390/diagnostics12112885
  35. Coleman JR, Moore E E, Samuels JM, Cohen MJ, Silliman CC, Ghasabyan A, Chandler J, Butenas S. Whole blood thrombin generation in severely injured patients requiring massive transfusion. J Am Coll Surg. 2021 May;232(5):709-16. doi: 10.1016/j.jamcollsurg.2020.12.058
  36. Huebner BR, Moore EE, Moore HB, Stettler GR, Nunns GR, Lawson P, Sauaia A, Kelher M, Banerjee A, Silliman CC. Thrombin provokes degranulation of platelet α-granules leading to the release of active plasminogen activator inhibitor-1 (PAI-1). Shock. 2018 Dec;50(6):671-76. doi: 10.1097/SHK.0000000000001089
  37. Darlington DN, Wu X, Keesee JD, Cap AP. Severe trauma and hemorrhage leads to platelet dysfunction and changes in cyclic nucleotides in the rat. Shock. 2020 Apr;53(4):468-75. doi: 10.1097/SHK.0000000000001379
  38. Wallen TE, Baucom MR, Hanseman D, Wang Y-WW, Wade CE, Holcomb JB, Pritts TA, Goodman MD. Platelet dysfunction persists after trauma despite balanced blood product resuscitation. Surgery. 2023 Mar;173(3):821-29. doi: 10.1016/j.surg.2022.09.017
  39. Verni CC, Davila A, Balian S, Sims CA, Diamond SL. Platelet dysfunction during trauma involves diverse signaling pathways and an inhibitory activity in patient-derived plasma. J Trauma Acute Care Surg. 2019 Feb;86(2):250-59. doi: 10.1097/TA.0000000000002140
  40. Verni CC, Davila A, Sims CA, Diamond SL. D-dimer and fibrin degradation products impair platelet signaling: plasma d-dimer is a predictor and mediator of platelet dysfunction during trauma. J Appl Lab Med. 2020 Nov 1;5(6):1253-64. doi: 10.1093/jalm/jfaa047
  41. Moore HB, Moore EE, Lawson PJ, Gonzalez E, Fragoso M, Morton AP, Gamboni F, Chapman MP, Sauaia A, Banerjee A, Silliman CC. Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock. Surgery. 2015 Aug;158(2):386-92. doi: 10.1016/j.surg.2015.04.008
  42. Neeki MM, Dong F, Toy J, Vaezazizi R, Powell J, Wong D, Mousselli M, Rabiei M, Jabourian A, Niknafs N, Burgett-Moreno M, Vara R, Kissel S,¶ Luo-Owen X, O’Bosky KR, Ludi D, Sporer K, Pennington T, Lee T, Borger R, Kwong E. Tranexamic acid in civilian trauma care in the California prehospital antifibrinolytic therapy study. West J Emerg Med. 2018 Nov; 19(6):977–986. doi: 10.5811/westjem.2018.8.39336
  43. Girish A, Hickman DA, Banerjee A, Luc N, Ma Y, Miyazawa K, Sekhon UDS, Sun M, Huang S, Gupta AS. Trauma-targeted delivery of tranexamic acid improves hemostasis and survival in rat liver hemorrhage model. J Thromb Haemost. 2019 Oct;17(10):1632-44. doi: 10.1111/jth.14552
  44. Guyette FX, Brown JB, Zenati MS, Early-Young BJ, Adams PW, Eastridge BJ, Nirula R, Vercruysse GA, ‘Keeffe T, Joseph B, Alarcon LH, Callaway CW, Zuckerbraun BS, Neal MD, Forsythe RM, Rosengart MR, Billiar TR, Yealy DM, Peitzman AB, Sperry JL. Tranexamic acid during prehospital transport in patients at risk for hemorrhage after injury: a double-blind, placebo-controlled, randomized clinical trial. JAMA Surg. 2020 Oct 5;156(1):11-20. doi: 10.1001/jamasurg.2020.4350
  45. Kodali S, Holmes CE, Tipirneni E, Cahill CR, Goodwin AJ, Cushman M. Successful management of refractory bleeding in liver failure with tranexamic acid: Ñase report and literature review. Res Pract Thromb Haemost. 2019 Apr 26;3(3):424-28. doi: 10.1002/rth2.12203
  46. Wu X, Benov A, Darlington DN, Keesee JD, Liu B, Cap AP. Effect of tranexamic acid administration on acute traumatic coagulopathy in rats with polytrauma and hemorrhage. PLoS One. 2019; 14(10): e0223406. doi: 10.1371/journal.pone.0223406
  47. Bocci MG, Nardi G, Veronesi G, Rondinelli MB, Palma A, Fiore V, De Candia E, Bianchi M, Maresca M, Barelli R, Tersali A, Dell’Anna AM, De Pascale G, Cutuli SL, Mercurio G, Caricato A, Grieco DL, Antonelli M, Cingolani E. Early coagulation support protocol: a valid approach in real-life management of major trauma patients. Results from two italian centres. Injury. 2019 Oct;50(10):1671-77. doi: 10.1016/j.injury.2019.09.032
  48. Miyazaki M, Kato M, Tanaka M, Tanaka K, Takao S, Kohjima M, Ito T., Enjoji M, Nakamuta M, Kotoh K, Takayanagi R. Antithrombin III injection via the portal vein suppresses liver damage. World J Gastroenterol. 2012 Apr 28; 18(16): 1884-91. doi: 10.3748/wjg.v18.i16.1884
  49. Harada N, Okajima K, Kushimoto S, Isobe H, Tanaka K. Antithrombin reduces ischemia/reperfusion injury of rat liver by increasing the hepatic level of prostacyclin. J Blood. 1999;93(1):157-64.
  50. Ren D, Giri H, Li J, Rezaie AR The cardioprotective signaling activity of activated protein c in heart failure and ischemic heart diseases. Int J Mol Sci. 2019 Apr 10;20(7):1762. doi: 10.3390/ijms20071762
Address for correspondence:
644074, Russian Federation,
Omsk, Komarova avenue, 17/3, 96, City Clinical Emergency Hospital No1,
tel.: +7-913-151-39-89,
e-mail: kinzerskij@mail.ru,
Kinzersky Alexander A.
Information about the authors:
Kinzersky A.A., Surgeon of the Surgical Department of the City Clinical Emergency Hospital No. 1, Assistant of the Department of Hospital Surgery named after A.I. N.S. Makokhi Federal State Budgetary Institution of Higher Education “Omsk State Medical University” of the Ministry of Health of Russia of the Russian Federation.
http://orcid.org/0000-0001-5749-1873
Korzhuk M.S., MD, Professor, Lecturer at the Department of Naval Surgery, Federal State Budgetary Educational Institution of Higher Education “Military Medical Academy named after A.I. CM. Kirov” of the Ministry of Defense of the Russian Federation, Researcher of the Scientific Laboratory of cancer Chemoprevention and Oncopharmacology of the Federal State Budgetary Institution “N.N. N.N. Petrov” of the Ministry of Health of Russia of the Russian Federation. Omsk, Russian Federation.
http://orcid.org/0000-0002-4579-2027
Dolgikh V.T., MD, Professor, Honored Scientist of the Russian Federation, Chief Researcher of the Research Institute of General Resuscitation named after V.I. V.A. Negovsky FGBNU “Federal Scientific and Clinical Center for Resuscitation and Rehabilitology”.
http://orcid.org/0000-0001-9034-4912
Solovieva T.S., Pathologist of the Federal State Budgetary Institution of Health “St. Petersburg Clinical Hospital of the Russian Academy of Sciences”.
http://orcid.org/0009-0005-2672-276X
Eselevich R.N., PhD, Major of the Medical Service, Head of the Oncology Department of the Clinic of the Department of Naval Surgery CM. Kirov” Ministry of Defense of the Russian Federation.
http://orcid.org/0000-0003-3249-233X
Balura O.V., PhD, Major of the Medical Service, Senior Lecturer of the Department of Naval Surgery CM. Kirov” Ministry of Defense of the Russian Federation.
http://orcid.org/0000-0001-7826-8056
Kotov I.I., MD, Associate Professor, Professor of the Department of Hospital Surgery. N.S. Makokhi Federal State Budgetary Institution of Higher Education “Omsk State Medical University” of the Ministry of Health of Russia of the Russian Federation, Omsk, Russian Federation.
http://orcid.org/0000-0002-9712-2391

T.I. KALENCHIC 1, S.L. KABAK 2, L.G. CEDRIC 2

SPONTANEOUS SOFT TISSUE HEMATOMA IN PATIENTS WITH COVID-19 INFECTION

Belarusian State Medical University 1,
6th City Clinical Hospital 2, Minsk,
Republic of Belarus

Objectives. The aim of this study is to determine the localization of spontaneous subcutaneous and muscle hematomas in patients with the SARS-CoV-2 infection, as well as to analyze changes in the main indicators of blood coagulation.
Material and Methods. The clinical data and the results of laboratory and instrumental studies of 12 patients (five men and seven women, aged 57 to 99 years) with coronavirus infection COVID-19 and spontaneous soft tissue hematomas, who were hospitalized in the therapeutic departments of the 6th Minsk’s city clinical hospital in 2021 - 2022, were analyzed. On the day of admission all patients were prescribed anticoagulants.
Results. Ultrasound and CT revealed 17 hematomas, which were localized in the retroperitoneal space, muscles of the anterior and lateral walls of the abdomen, as well as in the muscles of the thigh and gluteal region. Most often, hemorrhages were found in the soft tissues of the thigh. The volume of fluid in hematomas ranged from 25 to 1200 ml. In five cases, two isolated areas of hemorrhage were identified. In the projection of hematomas subcutaneous hemorrhages were detected. As the hematoma formed, in most cases there was a significant decrease in the level of hemoglobin, which was accompanied by tachycardia and a drop in blood pressure. Hemorrhagic shock of varying severity was diagnosed in all patients using the Algover index. All patients had comorbidities. All of them had a high risk of bleeding according to the HAS-BLED scale (from 3 to 5 points). After discontinuing anticoagulation, hemostatic therapy was prescribed. In 6 cases puncture drainage of the hematoma was performed. Four patients were transfused with red blood cells and fresh frozen plasma. Nine patients after 12-21 days of hospitalization in a satisfactory condition were discharged for outpatient aftercare, one was transferred to the Department of Purulent Surgery. In two cases, death from coronavirus infection and comorbid pathology was ascertained.
Conclusion. Elderly patients with severe and moderate SARS-CoV-2 viral pneumonia may develop spontaneous soft tissue hematomas, including multiple and large ones. Spontaneous hematomas of soft tissues in combination with advanced age, the presence of several concomitant illnesses are a risk factor for death.

Keywords: hematoma, COVID-19 infection, computed tomography, ultrasound, anticoagulants, comorbidity
p. 117-126 of the original issue
References
  1. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson JCT, Fogerty AE, Waheed A, Goodarzi K, Bendapudi PK, Bornikova L, Gupta S, Leaf DE, Kuter DJ, Rosovsky RP. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500. doi: 10.1182/blood.2020006520.
  2. Nagibinà MV, Sycheva AS, Koshelev IA, Malyavina MA, Solodov AA, Kebinà AL, Grigorieva EV, Semeniakin IV, Levchenko OV, Yanushevich OO. Spontaneous hematomas in COVID-19: causes, clinic, diagnosis and treatment. Clinical Medicine (In Russ). 2021;99(9-10):540-547. (In Russ.) doi: 10.30629/0023-2149-2021-99-9-10-540-547
  3. Buriev IM, Melkonyan GG, Vaganova PS, Guzeeva EB, Zamyatina KA, Kuzeev AN, Misiano SA, Pchelin VV, Kàrmàzànovsky GG. Sequence of actions for visualization of soft tissue hemorrhages/hematomas in elderly patients infected with SARS-CoV-2. Medical Visualization. 2022;26(3):10-21. (In Russ.) doi: 10.24835/1607-0763-1190
  4. Abate V, Casoria A, Rendina D, Muscariello R, Nuzzo V, Vargas M, Servillo G, Venetucci P, Conca P, Tufano A, Galletti F, Di Minno, G. Spontaneous muscle hematoma in patients with COVID-19: A systematic literature review with description of an additional case series. Seminars in Thrombosis and Hemostasis 2022; 48 (1): 100-108).doi: 10.1055/s-0041-1732370.
  5. Widysanto A, Wahyuni TD, Simanjuntak LH, Sunarso S, Siahaan SS, Haryanto H, Pandrya CO, Aritonang RCA, Gunawan C, Angela. Ecchymosis in critical coronavirus disease 2019 (COVID-19) patient in Tangerang, Indonesia: a case report. J Thromb Thrombolysis. 2021;52(2):635-639. doi: 10.1007/s11239-020-02338-7.
  6. Kashchenko VA, Ratnikov VA, Vasiukova EL, Svetlikov AV, Kebriakov AV, Ratnikova AK. Hematomas of different localizations in patients with COVID-19. Endoscopic Surgery. 2021;27(6):5 13. (In Russ.). doi: 10.17116/endoskop2021270615
  7. Riu P, Albarello F, Di Stefano F, Vergori A, D’Abramo A, Cerini C, Nocioni M, Morucci M, Tetaj N, Cristofaro M, Schininà V, Campioni P, Petrone A, Fusco N, Marchioni L, Antinori A, Nicastri E, Cianni R, Ianniello S. Management of spontaneous bleeding in COVID-19 inpatients: is tmbolizationalways needed? J Clin Med. 2021; 10(18):4119. doi: 10.3390/jcm10184119.
  8. Tavone AM, Giuga G, Attanasio A, Petroni G, Mauriello S, Cordova F, Marella GL. A rapid fatal outcome of Iliopsoas hematoma: clinical and autopsy findings. J Investig Med High Impact Case Rep. 2022;10: 23247096221111760. doi: 10.1177/23247096221111760
  9. Ryazancev AA, Balgiev OM, Grishin GP, Litvina OP, Profutkin AI. Ultrasound diagnosis of spontaneous soft tissue hematomas in patients with COVID-19. Ultrasound and functional diagnostics. 2021; 4: 79-93. (In Russ.)
  10. Schulman S, Kearon C; Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3(4):692-4. doi: 10.1111/j.1538-7836.2005.01204.x.
  11. Boira I, Esteban V, Vañes S, Castelló C, Celis C, Chiner E. Major Bleeding Complications in COVID-19 Patients. Cureus. 2021;13(8):e16816. doi: 10.7759/cureus.16816.
  12. Semeniakin IV, Levchenko OV, Yanushevich OO, Grigor’eva EV, Ivanova IV, Sycheva AS, Solodov AA, Lezhnev DA, Kebina AL. Spontaneous muscle bleeding in patients with COVID-19 (analysis of own observations). Moscow Surgical Journal. 2021;(3):79-88. (In Russ.) doi: 10.17238/2072-3180-2021-3-79-88
  13. Vergori A., Pianura E., Lorenzini P., D’Abramo A., Di Stefano F., Grisetti S., Vita S, Pinnetti C, Donno DR, Marini MC, Nicastri E, Ianniello S, Antinori A; ReCOVeRI Study Group. Spontaneous ilio-psoas haematomas (IPHs): a warning for COVID-19 inpatients. Annals of Medicine. 2021; 53(1), 295-301. doi: 10.1080/07853890.2021.1875498.
  14. Marzban-Rad S, Bahmani S, Kazemi A, Taheri HR. Acute retroperitoneal hematoma following severe Covid-19 and the use of anticoagulants. Ann Med Surg (Lond). 2022:103909. doi: 10.1016/j.amsu.2022.103909.
  15. Nematihonar B, Qaderi S, Shah J, Bagherpour JZ. Spontaneous giant rectus sheath hematoma in patients with COVID-19: two case reports and literature review. Int J Emerg Med. 2021;14(1):40. doi: 10.1186/s12245-021-00366-5.
  16. Nasif WA, El-Moursy Ali AS, Hasan Mukhtar M, Alhuzali AMH, YahyaAlnashri YA, Ahmed Gadah ZI, Edrees EAA, Albarakati HAM, MuhjiAloufi HS. Elucidating the correlation of D-Dimer levels with COVID-19 severity: A scoping review. Anemia. 2022: 9104209. doi: 10.1155/2022/9104209.
  17. Palatucci V, Lombardi G, Lombardi L, Giglio F, Giordano F, Lombardi D. Spontaneous muscle haematomas: management of 10 cases. Transl Med UniSa. 2014; 10:13-17.
Address for correspondence:
220116, Republic of Belarus,
Minsk, Dzerzhinsky Avenue, 83,
Belarusian State Medical University,
Department of Human Morphology,
tel. +375 (29) 6588339,
e-mail: kabakmorph@gmail.com.
Kabak Sergey Lvovich
Information about the authors:
Kalenchits Tamara Ivanovna, PhD, Associate Professor of the Department of Medical Rehabilitation and Physiotherapy, Belarusian State Medical University; Minsk, Republic of Belarus.
http://org/0000-0003-0387-4937
Kabak Sergey Lvovich, MD, Professor, Head of the Department of Human Morphology, Belarusian State Medical University, Minsk, Republic of Belarus,
http://org/0000-0002-7173-1818
Tsedrik Lyudmila G., Physician, Department of Functional Diagnostics, 6th City Clinical Hospital, Minsk, Republic of Belarus.

S.P. DOSMAGAMBETOV 1, B.K. DZHENALAEV 1, G.D. ZHUMAGALIYEVA 1, A.B. TUSSUPKALIEV 1, B.N. BISSALIYEV 1, G.Z. ABDULLAEVA 2

DIFFERENTIAL DIAGNOSIS OF ACUTE APPENDICITIS IN CHILDREN WITH COVID-19 ASSOCIATED MULTISYSTEM INFLAMMATORY SYNDROME

West Kazakhstan Medical University named after Marat Ospanov 1,
Motherhood and Childhood Care Center 2, Aktobe,
Republic of Kazakhstan

The publication describes clinical observations of children with multisystem inflammatory syndrome (MSIS) associated with SARS-CoV-2. The difficulties of diagnosis and differential diagnosis with acute appendicitis, peritonitis are shown. In April 2020, in the UK, there were reports of children having a picture of the disease similar to incomplete Kawasaki syndrome or toxic shock syndrome. Many researchers have concluded that MSVS is a dangerous systemic infectious disease characterized by extreme inflammation, fever, abdominal symptoms, conjunctivitis, and rash.
It is believed that the cause of abdominal pain in MSIS is mesenteric lymphadenitis, serous peritonitis. Ignorance of the manifestations of MSVS in children leads to late diagnosis of this severe pathology and futile surgical intervention.
Currently, many publications have appeared describing MSIS associated with SARS-CoV-2. WHO has developed a preliminary case definition and a case report form for multisystem inflammatory syndrome in children and adolescents. The preliminary case determination reflects the clinical and laboratory features observed in children that have been reported to date, and serves to identify suspected or confirmed cases, both for the purpose of providing treatment, and for preliminary reporting and follow-up. Therefore, there is an urgent need to collect standardized data describing clinical manifestations, severity, outcomes, and epidemiology.
During the current pandemic, paediatric surgeons should be more alert to MSIS when treating children with fever and acute abdomen. Early diagnosis of MSIS will allow you to avoid unnecessary operations that can worsen the already serious condition of the patient.
Taking into account the difficulties in the differential diagnosis of MSIS with acute surgical pathology of the abdominal cavity, it is important to ensure a multidisciplinary approach in the timely diagnosis of MSIS in seriously ill children. Only a joint examination of such specialists as an infectious disease specialist, cardiologist, pulmonologist, hematologist, nephrologist, pediatrician, pediatric surgeon and laboratory tests (clinical blood test, C-reactive protein, D-dimer, coagulogram), echocardiography, CT will allow timely detection of MSIS in children, to exclude surgical pathology of the abdominal cavity.

Keywords: multisystem inflammatory syndrome, acute appendicitis, peritonitis, mesadenitis, multidisciplinary approach
p. 127-136 of the original issue
References
  1. Osobennosti klinicheskikh proiavlenii i lecheniia zabolevaniia, vyzvannogo novoi koronovirusnoi infektsiei (COVID-19) u detei. Metodicheskie rekomendatsii. Versiia 2(03.07.2020) (utv. Minzdravom Rossii) [Elektronnyi resurs]. Rezhim dostupa: https://static-0.minzdrav.gov.ru/system/attachments/attaches/ 000/050/914/original/03062020_%D0%B4%D0%B5%D1%82%D0%B8_COVID-19_v2.pdf (In Russ.)
  2. Gottlieb M, Bridwell R, Ravera J, Long B. Multisystem inflammatory syndrome in children with COVID-19. Am J Emerg Med. 2021 Nov;49:148-52. doi: 10.1016/j.ajem.2021.05.076
  3. Esposito S, Principi N. Multisystem Inflammatory Syndrome in Children Related to SARS-CoV-2. Paediatr Drugs. 2021 Mar;23(2):119-29. doi: 10.1007/s40272-020-00435-x
  4. Blumfield E, Levin TL, Kurian J, Lee EY, Liszewski MC. Imaging Findings in Multisystem Inflammatory Syndrome in Children (MIS-C) Associated With Coronavirus Disease (COVID-19). AJR Am J Roentgenol. 2021 Feb;216(2):507-17. doi: 10.2214/AJR.20.24032
  5. Zhang QY, Xu BW, Du JB. Similarities and differences between multiple inflammatory syndrome in children associated with COVID-19 and Kawasaki disease: clinical presentations, diagnosis, and treatment. World J Pediatr. 2021 Aug;17(4):335-40. doi: 10.1007/s12519-021-00435-y
  6. Kest H, Kaushik A, DeBruin W, Colletti M, Goldberg D. Multisystem Inflammatory Syndrome in Children (MIS-C) Associated with 2019 Novel Coronavirus (SARS-CoV-2) Infection. Case Rep Pediatr. 2020 Jul 18;2020:8875987. doi: 10.1155/2020/8875987. eCollection 2020.
  7. Zou H, Lu J, Liu J, Wong JH, Cheng S, Li Q, Shen Y, Li C, Jia X. Characteristics of pediatric multi-system inflammatory syndrome (PMIS) associated with COVID-19: a meta-analysis and insights into pathogenesis. Int J Infect Dis. 2021 Jan;102:319-26. doi: 10.1016/j.ijid.2020.11.145
  8. World Health Organization (WHO). WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020 [Internet]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
  9. Ahmed M, Advani S, Moreira A, Zoretic S, Martinez J, Chorath K, Acosta S, Naqvi R, Burmeister-Morton F, Burmeister F, Tarriela A, Petershack M, Evans M, Hoang A, Rajasekaran K, Ahuja S, Moreira A. Multisystem inflammatory syndrome in children: A systematic review. EClinicalMedicine. 2020 Sep;26:100527. doi: 10.1016/j.eclinm.2020.100527
  10. Ardila Gómez IJ, López PP, Duque DC, García DMS, Romero AF, Vega MRV, Ramos Castañeda JA. Abdominal manifestation of multisystemic inflammatory syndrome in children. J Pediatr Surg Case Rep. 2021 Nov;74:102042. doi: 10.1016/j.epsc.2021.102042
  11. Al Lawati Z, Al Rawahi H, Al Yazidi LS. Acute appendicitis mimicking multisystem inflammatory syndrome in children: case report and review of the literature. J Paediatr Child Health. 2021 Mar;57(3):461-62. doi: 10.1111/jpc.15398
  12. Unny AK, Rajashree P, Sundararajan L, Sankar J. Abdominal manifestations of multisystem inflammatory syndrome in children: a single-center experience. Indian Pediatr. 2022 Dec 15;59(12):936-38. doi: 10.1007/s13312-022-2667-2
  13. Rouva G, Vergadi E, Galanakis E. Acute abdomen in multisystem inflammatory syndrome in children: A systematic review. Acta Paediatr. 2022 Mar;111(3):467-72. doi: 10.1111/apa.16178
  14. Udochi N, Parker HJ, Owusu M. Abdominal pain, a red herring for Multisystem Inflammatory Syndrome in Children (MIS-C): a case report. J Fam Med Dis Prev. 2020;6:127. doi: 10.23937/2469-5793/1510127
  15. Valitutti F, Verde A, Pepe A, Sorrentino E, Veneruso D, Ranucci G, Orlando F, Mastrominico A, Grella MG, Mandato C. Multisystem inflammatory syndrome in children. An emerging clinical challenge for pediatric surgeons in the COVID 19 era. J Pediatr Surg Case Rep. 2021 Jun;69:101838. doi: 10.1016/j.epsc.2021.101838
  16. Jackson RJ, Chavarria HD, Hacking SM. A case of multisystem inflammatory syndrome in children mimicking acute appendicitis in a COVID-19. Pandemic Area Cureus. 2020;12(9):e10722. doi: 10.7759/cureus.10722
  17. Hwang M, Wilson K, Wendt L, Pohlman J, Densmore E, Kaeppler C, Van Arendonk K, Yale S. The great gut mimicker: a case report of MIS-C and appendicitis clinical presentation overlap in a teenage patient. BMC Pediatr. 2021 Jun 1;21(1):258. doi: 10.1186/s12887-021-02724-x
Address for correspondence:
030019, the Republic of Kazakhstan,
Aktobe, Maresyev st., 68,
West Kazakhstan Medical University
Named after Marat Ospanov,
Department of Pediatric Surgery,
Tel. +7 701 559-68-10,
e-mail: Dossag2011@mail.ru,
Dosmagambetov Sagidulla P.
Information about the authors:
Dosmagambetov Sagidulla P., Candidate of medical sciences (PhD), associate professor of the chair of pediatric surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
http://orcid.org/0000-0002-6525-8438
Dzhenalaev Bulat K., Doctor of medical sciences (PhD, MD), professor of the chair of pediatric surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
http://orcid.org/0000-0001-7494-5072
Zhumagaliyeva Galina D., Candidate of medical sciences (PhD), associate professor of the course of infectious diseases in children, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
http://orcid.org/0000-0002-5448-072X
Tussupkaliev Assylbek B., Candidate of medical sciences (PhD), associate professor of the chair of pediatric surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan.
http://orcid.org/0000-0003-2386-2984
Bissaliyev Bauyrzhan N., Candidate of medical sciences (PhD), associate professor of the chair of pediatric surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Republic of Kazakhstan. http://orcid.org/0000-0002-4875-1140
Abdullaeva Gulzhamal Z., Head of the Intensive Care Unit of the pediatric in-patient department of Aktyubinsk Medical Centre, Aktobe, Republic of Kazakhstan.
http://orcid.org/0000-0002-9018-5891

N.A. KARPUK 1, S.P. RUBNIKOVICH 2, I.V. ZHYLTSOU 1, O.C. MAZUR 3, I.YU. KARPUK 1, A.P. MIKHALENKA3

SOMATIC MUTATIONS IN ORAL SQUAMOUS CELL CARCINOMAS

Vitebsk State Medical University 1, Vitebsk,
Belorusian State Medical University 2, Republic of Belarus
Institute of Genetics and Cytology of the Belorusian National Academy of Sciences, Laboratory of Environmental Genetics and Biotechnology 3, Minsk,
Republic of Belarus

Objective. The number of cases of oral squamous cell carcinoma (OSCC) is increasing annually all over the world. At the same time, the prediction of the development and early diagnosis of OSCC are consided to be the most important health problems. By using high throughput DNA sequencing (DNA-seq) technologies, it is possible to identify genetic variants that play a role in human health.
Methods. The samples (n=48) of altered oral mucosal epithelium of patients with oral mucosal leukoplakia (n=24) and oral squamous cell carcinomas (n=24) were the material for the study. The QIAamp DNA FFPE Tissue Kit (Qiagen, Germany) was used to isolate DNA from the samples. DNA sequencing was performed with Illumina NextSeq 550 sequencer and TruSight™ Oncology 500 DNA Kit, For Use with NextSeq (Illumina, USA). All operations for DNA extraction from biological samples, preparation of DNA libraries, and sequencing were performed step by step in strict accordance with the instructions supplied with the reagent kits. The bioinformatic analysis was performed by an experienced professional using Illumina BaseSpace and Galaxy Project specialized software and in accordance with current guidelines.
Results. Identified pathogenic and probably pathogenic variants in ERCC3, HOXB13, KRAS, MSH3, MSH6, PIK3CA, and TP53 genes are associated with a high probability (RR 90-22000) of oral squamous cell carcinomas development.
Conclusion. This information allows working out PCR and NGS test systems for predicting the development and early diagnosis of oral squamous cell carcinomas.

Keywords: DNA sequencing, somatic mutations, oral squamous cell carcinomas
p. 137-145 of the original issue
References
  1. van der Waal I. Oral leukoplakia, the ongoing discussion on definition and terminology. Med Oral Patol Oral Cir Bucal. 2015;20(6):e685-e692. Published 2015 Nov 1. doi: 10.4317/medoral.21007.
  2. Kalavrezos N, Scully C. Mouth Cancer for Clinicians. Part 1: Cancer. Dent Update. 2015;42(3):250-260. doi: 10.12968/denu.2015.42.3.250.
  3. Izumchenko E, Sun K, Jones S, Brait M, Agrawal N, Koch W, McCord CL, Riley DR, Angiuoli SV, Velculescu VE, Jiang WW, Sidransky D. Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev Res (Phila). 2015 Apr;8(4):277-286. doi: 10.1158/1940-6207.CAPR-14-0257. Epub 2014 Nov 18.
  4. Novikova MV, Rybko VA, Hromova NV, Farmakovskaja MD, Kopnin PB. The role of Notch proteins in the processes of carcinogenesis. Uspehi molekuljarnoj onkologii. 2015;(3):30-42. (in Russ)
  5. Razavi SM, Jafari M, Heidarpoor M, Khalesi S. Minichromosome maintenance-2 (MCM2) expression differentiates oral squamous cell carcinoma from pre-cancerous lesions. Malays J Pathol. 2015 Dec;37(3):253-8.
  6. Ribeiro IP, Marques F, Barroso L, Rodrigues J, Caramelo F, Melo JB, Carreira IM. Genomic profile of oral squamous cell carcinomas with an adjacent leukoplakia or with an erythroleukoplakia that evolved after the treatment of primary tumor: A report of two cases. Mol Med Rep. 2017 Nov;16(5):6780-6786. doi: 10.3892/mmr.2017.7428. Epub 2017 Sep 5.
  7. Núñez F, Domínguez O, Coto E, Suárez-Nieto C, Pérez P, López-Larrea C. Analysis of ras oncogene mutations in human squamous cell carcinoma of the head and neck. Surg Oncol. 1992 Dec;1(6):405-11. doi: 10.1016/0960-7404(92)90043-k.
  8. Chung CM, Hung CC, Lee CH, Lee CP, Lee KW, Chen MK, Yeh KT, Ko YC. Variants in FAT1 and COL9A1 genes in male population with or without substance use to assess the risk factors for oral malignancy. PLoS One. 2019 Jan 18;14(1):e0210901. doi: 10.1371/journal.pone.0210901.
  9. QIAamp® DNA FFPE Tissue Handbook [Electronic resource]. Published February 2020 [cited 2022 October 27]. Available from: https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/dna-purification/genomic-dna/ qiaamp-dna-ffpe-tissue-kit/
  10. Illumina TruSight Oncology 500 Reference Guide [Electronic resource]. [cited 2021 May 26]. Available from: https://support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/trusight/oncology-500/trusight-oncology-500-reference-guide-1000000067621_07.pdf
  11. Kanzi AM, San JE, Chimukangara B, Wilkinson E, Fish M, Ramsuran V, de Oliveira T. Next Generation Sequencing and Bioinformatics Analysis of Family Genetic Inheritance. Front Genet. 2020 Oct 23;11:544162. doi: 10.3389/fgene.2020.544162.
  12. Kajumov AR. Molekuljarnyj analiz genoma [Molecular analysis of the genome]. Kazan: Kazan Federal University; 2016. 60 p. (in Russ)
  13. Fox AJ, Hiemenz MC, Lieberman DB, Sukhadia S, Li B, Grubb J, Candrea P, Ganapathy K, Zhao J, Roth D, Alley E, Loren A, Morrissette JJ. Next Generation Sequencing for the Detection of Actionable Mutations in Solid and Liquid Tumors. J Vis Exp. 2016 Sep 20;(115):52758. doi: 10.3791/52758.
  14. Buzdugan L, Kalisch M, Navarro A, Schunk D, Fehr E, Bühlmann P. Assessing statistical significance in multivariable genome wide association analysis. Bioinformatics. 2016 Jul 1;32(13):1990-2000. doi: 10.1093/bioinformatics/btw128. Epub 2016 Mar 7.
  15. Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 2012 May 1;4(5):a008052. doi: 10.1101/cshperspect.a008052
  16. Ouhtit A, Al-Kindi MN, Kumar PR, Gupta I, Shanmuganathan S, Tamimi Y. Hoxb13, a potential prognostic biomarker for prostate cancer. Front Biosci (Elite Ed). 2016 Jan 1;8(1):40-5. doi: 10.2741/E749. PMID: 26709644
  17. Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci. 2018 Feb 20;18(1):8-20. doi: 10.17305/bjbms.2018.2756
  18. Aburjania Z, Jang S, Whitt J, Jaskula-Stzul R, Chen H, Rose JB. The Role of Notch3 in Cancer. Oncologist. 2018 Aug;23(8):900-911. doi: 10.1634/theoncologist.2017-0677. Epub 2018 Apr 5.
  19. Ibrahim A, Chopra S. Succinate Dehydrogenase-Deficient Gastrointestinal Stromal Tumors. Arch Pathol Lab Med. 2020 May;144(5):655-660. doi: 10.5858/arpa.2018-0370-RS. Epub 2019 Jun 6.
  20. Mercado-Asis LB, Wolf KI, Jochmanova I, Taïeb D. Pheochromocytoma: a genetic and diagnostic update. Endocr Pract. 2018 Jan;24(1):78-90. doi: 10.4158/EP-2017-0057. Epub 2017 Nov 16.
  21. Liu B, Wang T, Wang H, Zhang L, Xu F, Fang R, Li L, Cai X, Wu Y, Zhang W, Ye L. Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer. J Hematol Oncol. 2018 Feb 23;11(1):26. doi: 10.1186/s13045-018-0577-5
  22. Ouhtit A, Al-Kindi MN, Kumar PR, Gupta I, Shanmuganathan S, Tamimi Y. Hoxb13, a potential prognostic biomarker for prostate cancer. Front Biosci (Elite Ed). 2016 Jan 1;8(1):40-5. doi: 10.2741/E749. PMID: 26709644.
  23. Griffith M, Spies NC, Krysiak K, McMichael JF, Coffman AC, Danos AM, Ainscough BJ, Ramirez CA, Rieke DT, Kujan L, Barnell EK, Wagner AH, Skidmore ZL, Wollam A, Liu CJ, Jones MR, Bilski RL, Lesurf R, Feng YY, Shah NM, Bonakdar M, Trani L, Matlock M, Ramu A, Campbell KM, Spies GC, Graubert AP, Gangavarapu K, Eldred JM, Larson DE, Walker JR, Good BM, Wu C, Su AI, Dienstmann R, Margolin AA, Tamborero D, Lopez-Bigas N, Jones SJ, Bose R, Spencer DH, Wartman LD, Wilson RK, Mardis ER, Griffith OL. CIViC is a community knowledgebase for expert crowdsourcing the clinical interpretation of variants in cancer. Nat Genet. 2017 Jan 31;49(2):170-174. doi: 10.1038/ng.3774.
  24. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405-24. doi: 10.1038/gim.2015.30. Epub 2015 Mar 5.
  25. The Genome Aggregation Database (gnomAD) [Electronic resource]. [cited 2022 July 25]. Available from: https://gnomad.broadinstitute.org
  26. Loeb LA, Loeb KR, Anderson JP. Multiple mutations and cancer. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):776-81. doi: 10.1073/pnas.0334858100. Epub 2003 Jan 27.
  27. Loeb KR, Loeb LA. Significance of multiple mutations in cancer. Carcinogenesis. 2000 Mar;21(3):379-85. doi: 10.1093/carcin/21.3.379.
  28. Saito Y, Koya J, Kataoka K. Multiple mutations within individual oncogenes. Cancer Sci. 2021 Feb;112(2):483-489. doi: 10.1111/cas.14699. Epub 2021 Jan 11.
  29. Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and developmental disorders? Sci Adv. 2022 Jan 14;8(2):eabm2059. doi: 10.1126/sciadv.abm2059. Epub 2022 Jan 14.
Address for correspondence:
210009, Republic of Belarus,
Vitebsk, Frunze Ave., 27,
Vitebsk State Medical University,
tel.: +375-29-596-10-83,
e-mail: ms.karpuk@mail.ru,
Karpuk Natalia A.
Information about the authors:
Karpuk Natalia A., PhD, Associate Professor, Associate Professor of the Department of General and Orthopedic Dentistry with the Course of FAT and RP Vitebsk State Medical University, Vitebsk, Republic of Belarus.
http://orcid.org/0000-0001-9991-7034
Rubnikovich Sergey P. Corresponding Member of NASB, MD, Professor, Rector of Belarusian State Medical University, Minsk, Republic of Belarus.
http://orcid.org/0000-0002-7450-3757
Zhyltsou Ivan V, MD, Professor, Head of the Department of Evidence-Based Medicine and Clinical Diagnostics of the Faculty of Advanced Training and Retraining of Vitebsk State Medical University, Vitebsk, Republic of Belarus.
http://orcid.org/0000-0002-4912-2880
Mazur Oksana C., Researcher, Laboratory of Environmental Genetics and Biotechnology, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
http://orcid.org/0000-0002-6093-4548
Karpuk Ivan Yu., MD, Dean of the Faculty of Dentistry, Professor of the Department of General Dentistry with the Course of Prosthodontic Dentistry of. Vitebsk State Medical University, Vitebsk, Republic of Belarus.
http://orcid.org/0000-0001-9991-7035
Mikhalenka Alena P., PhD (Biol.), Senior Researcher, Laboratory of Environmental Genetics and Biotechnology, Institute of Genetics and Cytology of the National Academy of Sciences of Belarus , Minsk, Belarus.
http://orcid.org/0000-0003-4543-2862.

REVIEWS

K.S. RUSSKOVA, K.F. CHERNOUSOV, R.V. KARPOVA

THE ROLE OF ANGIOGENESIS AND COAGULOPATHY IN PATHOGENESIS OF PORTAL HYPERTENSION IN LIVER CIRRHOSIS

I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow,
Russian Federation

Portal hypertension is the most dangerous complication of chronic liver diseases. There are three closely related processes leading to this: inflammation, fibrosis and pathological angiogenesis. A number of studies showed that antiangiogenic therapy prevents the progression of cirrhosis and portal hypertension. Recent studies suggest that the role of angiogenesis in the progression of fibrotic changes and their reorganization is complex and ambiguous. Such processes as sinusoidal angiogenesis and perisinusoidal fibrolysis, their contribution to the reduction of intrahepatic resistance and compensation of portal hypertension are discussing. Historically, hemorrhagic complications have been considered the main manifestation of coagulation disorders in patients with liver cirrhosis, however, portal vein thrombosis occurs in 16-23% of cirrhosis patients. Currently, liver cirrhosis is considered as a prothrombotic condition that requires careful diagnosis and the corrective drug therapy. It was that patients with cirrhosis taking anticoagulants have a lower risk of bleeding from varicose veins of esophagus and are less likely to become decompensated. However, there are not enough results of clinical studies to form clear indications for drug and surgical treatment of thrombotic complications in liver cirrhosis, therefore this question requires further investigation.

Keywords: portal hypertension, liver cirrhosis, angiogenesis, fibrosis reorganization, coagulation blood properties, hypercoagulation
p. 146-156 of the original issue
References
  1. Gunarathne LS, Rajapaksha H, Shackel N, Angus PW, Herath CB. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J Gastroenterol. 2020 Oct 28;26(40):6111-40. doi: 10.3748/wjg.v26.i40.6111
  2. Jepsen P, Younossi ZM. The global burden of cirrhosis: A review of disability-adjusted life-years lost and unmet needs. J Hepatol. 2021 Jul;75(Suppl 1):S3-S13. doi: 10.1016/j.jhep.2020.11.042
  3. Anisimov AIu, Vertkin AL, Deviatov AV, Dzidzava II, Zhigalova SB, Zatevakhin II, Ivashkin VT, Kitsenko EA, Kotiv BN, Lebezev VM, Lopatkina TN, Maevskaia MV, Manuk’ian GV, Monakhov DV, Nazyrov FG, Ogurtsov PP, Pavlov ChS, Prudkov MI, Khoron’ko IuV, Tsitsiashvili MSh, Chzhao AV, Shertsinger AG, Shipovskii VN. Klinicheskie rekomendatsii po lecheniiu krovotechenii iz varikozno rasshirennykh ven pishchevoda i zheludka [Internet]. Rossiiskoe obshchestvo khirurgov, assotsiatsiia gepatopankreatobiliarnykh khirurgov stran SNG [dostupno 2022 Iiun’ 08]. Moscow, RF; 2014. 45 p. https://www.mrckb.ru/files/krovotecheniya_iz_varikoznorasshirennyx_ven_pishhevoda_i_zheludka.PDF (In Russ.)
  4. Iwakiri Y, Trebicka J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Reports [Electronic resource]. 2021 [cited 2022 Mar 02]. Available from: https://www.jhep-reports.eu/article/S2589-5559(21)00092-6/fulltext
  5. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol [Electronic resource]. 2018. [cited 2022 Mar 02]. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168-8278(18)31966-4
  6. Chernousov A.F., Khorobrykh T.V., Karpova R.V., Zenkova K. Liver regeneration in cirrhosis under the influence of cryoprecipitate. Novosti Khirurgii 2017;25(4):350-58. doi: 10.18484/2305-0047.2019.1.108.(In Russ)
  7. Chernousov AF, Khorobrikh TV, Karpova RV. Regeneration of cirrhotic rabbit liver with intrahepatic administration of cryoprecipitate. Bull Experim Biol & Med. 2012;154(9):384-86. .(In Russ.)
  8. Chernousov A.F., Khorobrikh T.V., Karpova R.V. Regeneration of liver tissue under the influence of cryoprecipitate and alloplant. Surgery. Zhurn named after N.I. Pirogov. 2015;(7):27-33. doi: 10.17116/hirurgia2015727-33.(In Russ.)
  9. Chernousov AF, Khorobrikh TV, Karpova RV. Minimally invasive surgical interventions under ultrasound guidance in the treatment of diffuse liver diseases. Vestn Surgeon of Gastroenterology. 2011;(4):4-9.(In Russ.)
  10. Iwakiri Y. Endothelial dysfunction in the regulation of cirrhosis and portal hypertension. Liver Int. 2012 Feb;32(2):199-13. doi: 10.1111/j.1478-3231.2011.02579.x
  11. Garbuzenko D.V. Aspects of pathogenetc pharmacotherapy for portal hypertension in liver cirrhosis Terapevt Arkh. 2016;88(2):101-10 https://ter-arkhiv.ru/0040-3660/ article/view/31939. (In Russ.)
  12. DV. Aspects of pathogenetic pharmacotherapy of portal hypertension in liver cirrhosis. Ther Arch. 2016;88(2):101-108. doi: 10.17116/terarkh2016888101-108(In Russ.)
    13. Park S, Kim JW, Kim JH, Lim CW, Kim B. Differential Roles of Angiogenesis in the Induction of Fibrogenesis and the Resolution of Fibrosis in Liver. Biol Pharm Bull. 2015;38(7):980-85. doi: 10.1248/bpb.b15-00325
  13. Selicean S, Wang C, Guixé-Muntet S, Stefanescu H, Kawada N, Gracia-Sancho J. Regression of portal hypertension: underlying mechanisms and therapeutic strategies. Hepatol Int. 2021 Feb;15(1):36-50. doi: 10.1007/s12072-021-10135-4
  14. Wang YQ, Ikeda K, Ikebe T, Hirakawa K, Sowa M, Nakatani K, Kawada N, Kaneda K. Inhibition of hepatic stellate cell proliferation and activation by the semisynthetic analogue of fumagillin TNP-470 in rats. Hepatology. 2000 Nov;32(5):980-9. doi: 10.1053/jhep.2000.18658
  15. Huang Y, Feng H, Kan T, Huang B, Zhang M, Li Y, Shi C, Wu M, Luo Y, Yang J, Xu F. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS One. 2013 Aug 30;8(8):e73492. doi: 10.1371/journal.pone.0073492. eCollection 2013.
  16. Pinter M, Sieghart W, Reiberger T, Rohr-Udilova N, Ferlitsch A, Peck-Radosavljevic M. The effects of sorafenib on the portal hypertensive syndrome in patients with liver cirrhosis and hepatocellular carcinoma–a pilot study. Aliment Pharmacol Ther. 2012 Jan;35(1):83-91. doi: 10.1111/j.1365-2036.2011.04896.x
  17. Marrone G, Maeso-Díaz R, García-Cardena G, Abraldes JG, García-Pagán JC, Bosch J, Gracia-Sancho J. KLF2 exerts antifibrotic and vasoprotective effects in cirrhotic rat livers: behind the molecular mechanisms of statins. Gut. 2015 Sep;64(9):1434-43. doi: 10.1136/gutjnl-2014-308338
  18. Mejias M, Garcia-Pras E, Tiani C, Bosch J, Fernandez M. The somatostatin analogue octreotide inhibits angiogenesis in the earliest, but not in advanced, stages of portal hypertension in rats. J Cell Mol Med. 2008 Sep-Oct;12(5A):1690-99. doi: 10.1111/j.1582-4934.2008.00218.x
  19. Kemp W, Colman J, Thompson K, Madan A, Vincent M, Chin-Dusting J, Kompa A, Krum H, Roberts S. Norfloxacin treatment for clinically significant portal hypertension: results of a randomised double-blind placebo-controlled crossover trial. Liver Int. 2009 Mar;29(3):427-33. doi: 10.1111/j.1478-3231.2008.01850.x
  20. Garcia-Tsao G, Fuchs M, Shiffman M, Borg BB, Pyrsopoulos N, Shetty K, Gallegos-Orozco JF, Reddy KR, Feyssa E, Chan JL, Yamashita M, Robinson JM, Spada AP, Hagerty DT, Bosch J. Emricasan (IDN-6556) Lowers Portal Pressure in Patients With Compensated Cirrhosis and Severe Portal Hypertension. Hepatology. 2019 Feb;69(2):717-28. doi: 10.1002/hep.30199
  21. Elpek GÖ. Angiogenesis and liver fibrosis. World J Hepatol. 2015 Mar 27;7(3):377-91. doi: 10.4254/wjh.v7.i3.377
  22. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest. 1998 Aug 1;102(3):538-49. doi: 10.1172/JCI1018
  23. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: a translational success story. Gut. 2015 May;64(5):830-41. doi: 10.1136/gutjnl-2014-306842
  24. Chang TT, Liaw YF, Wu SS, Schiff E, Han KH, Lai CL, Safadi R, Lee SS, Halota W, Goodman Z, Chi YC, Zhang H, Hindes R, Iloeje U, Beebe S, Kreter B. Long-term entecavir therapy results in the reversal of fibrosis/cirrhosis and continued histological improvement in patients with chronic hepatitis B. Hepatology. 2010 Sep;52(3):886-93. doi: 10.1002/hep.23785
  25. Ding BS, Cao Z, Lis R, Nolan DJ, Guo P, Simons M, Penfold ME, Shido K, Rabbany SY, Rafii S. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature. 2014 Jan 2;505(7481):97-102. doi: 10.1038/nature12681
  26. Garcia-Irigoyen O, Carotti S, Latasa MU, Uriarte I, Fernández-Barrena MG, Elizalde M, Urtasun R, Vespasiani-Gentilucci U, Morini S, Banales JM, Parks WC, Rodriguez JA, Orbe J, Prieto J, Páramo JA, Berasain C, Ávila MA. Matrix metalloproteinase-10 expression is induced during hepatic injury and plays a fundamental role in liver tissue repair. Liver Int. 2014 Aug;34(7):e257-70. doi: 10.1111/liv.12337
  27. Kantari-Mimoun C, Castells M, Klose R, Meinecke AK, Lemberger UJ, Rautou PE, Pinot-Roussel H, Badoual C, Schrödter K, Österreicher CH, Fandrey J, Stockmann C. Resolution of liver fibrosis requires myeloid cell-driven sinusoidal angiogenesis. Hepatology. 2015 Jun;61(6):2042-55. doi: 10.1002/hep.27635
  28. Zhao W, Li JJ, Cao DY, Li X, Zhang LY, He Y, Yue SQ, Wang DS, Dou KF. Intravenous injection of mesenchymal stem cells is effective in treating liver fibrosis. World J Gastroenterol. 2012 Mar 14;18(10):1048-58. doi: 10.3748/wjg.v18.i10.1048.
  29. Chen L, Brenner DA, Kisseleva T. Combatting Fibrosis: Exosome-Based Therapies in the Regression of Liver Fibrosis. Hepatol Commun. 2018 Dec 13;3(2):180-92. doi: 10.1002/hep4.1290. eCollection 2019 Feb.
  30. Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol. 2021 Mar;18(3):151-66. doi: 10.1038/s41575-020-00372-7
  31. Êóðêèíà ÈÀ, Ìàåâñêàÿ ÌÂ, Èâàøêèí ÂÒ. Ãèïåðêîàãóëÿöèÿ è òðîìáîç ó áîëüíûõ öèððîçîì ïå÷åíè. Ïîëèêëèíèêà. 2015;(4-2):20-26.
  32. O’Leary JG, Greenberg CS, Patton HM, Caldwell SH. AGA Clinical Practice Update: Coagulation in Cirrhosis. Gastroenterology. 2019 Jul;157(1):34-43.e1. doi: 10.1053/j.gastro.2019.03.070
  33. Intagliata NM, Caldwell SH, Tripodi A. Diagnosis, Development, and Treatment of Portal Vein Thrombosis in Patients With and Without Cirrhosis. Gastroenterology. 2019 May;156(6):1582-99.e1. doi: 10.1053/j.gastro.2019.01.265
  34. Ma SD, Wang J, Bezinover D, Kadry Z, Northup PG, Stine JG. Inherited thrombophilia and portal vein thrombosis in cirrhosis: A systematic review and meta-analysis. Res Pract Thromb Haemost. 2019 Sep 10;3(4):658-67. doi: 10.1002/rth2.12253. eCollection 2019 Oct
  35. Karpova RV, Russkova KS, Lavrentieva YN. Increases in Autoantibody Level Associated with Degenerative Changes in the Intestinal Mucosa in Liver Cirrhosis. Clin Exp Gastroenterol. 2020 Aug 26;13:315-320. doi: 10.2147/CEG.S263176. eCollection 2020.
  36. Shamseddeen H, Patidar KR, Ghabril M, Desai AP, Nephew L, Kuehl S, Chalasani N, Orman ES. Features of Blood Clotting on Thromboelastography in Hospitalized Patients With Cirrhosis. Am J Med. 2020 Dec;133(12):1479-87.e2. doi: 10.1016/j.amjmed.2020.04.029
  37. Labidi A, Baccouche H, Fekih M, Mahjoub S, BenMustapha N, Serghini M, BenRomdhane N, Boubaker J. The relationship between coagulation disorders and the risk of bleeding in cirrhotic patients. Ann Hepatol. 2019 Jul-Aug;18(4):627-32. doi: 10.1016/j.aohep.2018.12.007
  38. Margini C, Berzigotti A. Portal vein thrombosis: The role of imaging in the clinical setting. Dig Liver Dis. 2017 Feb;49(2):113-20. doi: 10.1016/j.dld.2016.11.013
  39. O’Shea RS, Davitkov P, Ko CW, Rajasekhar A, Su GL, Sultan S, Allen AM, Falck-Ytter Y. AGA Clinical Practice Guideline on the Management of Coagulation Disorders in Patients With Cirrhosis. Gastroenterology. 2021 Nov;161(5):1615-27.e1. doi: 10.1053/j.gastro.2021.08.015
  40. Mohan BP, Aravamudan VM, Khan SR, Ponnada S, Asokkumar R, Adler DG. Treatment response and bleeding events associated with anticoagulant therapy of portal vein thrombosis in cirrhotic patients: Systematic review and meta-analysis. Ann Gastroenterol. 2020 Sep-Oct;33(5):521-27. doi: 10.20524/aog.2020.0503
  41. Zhang R, Huang X, Jiang Y, Wang J, Chen S. Effects of Anticoagulants on Experimental Models of Established Chronic Liver Diseases: A Systematic Review and Meta-Analysis. Can J Gastroenterol Hepatol. 2020 Dec 11;2020:8887574. doi: 10.1155/2020/8887574. eCollection 2020.
  42. Duplantier JG, Dubuisson L, Senant N, Freyburger G, Laurendeau I, Herbert JM, Desmoulière A, Rosenbaum J. A role for thrombin in liver fibrosis. Gut. 2004 Nov;53(11):1682-87. doi: 10.1136/gut.2003.032136
  43. Borensztajn K, von der Thüsen JH, Peppelenbosch MP, Spek CA. The coagulation factor Xa/protease activated receptor-2 axis in the progression of liver fibrosis: a multifaceted paradigm. J Cell Mol Med. 2010 Jan;14(1-2):143-53. doi: 10.1111/j.1582-4934.2009.00980.x
  44. Groeneveld D, Pereyra D, Veldhuis Z, Adelmeijer J, Ottens P, Kopec AK, Starlinger P, Lisman T, Luyendyk JP. Intrahepatic fibrin(ogen) deposition drives liver regeneration after partial hepatectomy in mice and humans. Blood. 2019 Mar 14;133(11):1245-56. doi: 10.1182/blood-2018-08-869057
Address for correspondence:
119435, Russian Federation,
Moscow, Bolshaya Pirogovskaya str., 6-1,
I.M. Sechenov First Moscow
State Medical University,
the Faculty Surgery Department No1
tel. +7 905-016-40-54,
e-mail: russkova.ksy@gmail.com,
Russkova Ksenia S.
Information about the authors:
Russkova Ksenia S., Post-Graduate Student, the Department of Faculty Surgery No1 of N.V. Sklifosovsky Institute of Clinical Medicine I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation. https://orcid.org/0000-0003-2150-7567
Chernousov Kirill F., Post-Graduate Student, the Department of Faculty Surgery No1 of N.V. Sklifosovsky Institute of Clinical Medicine I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation. https://orcid.org/0000-0002-1751-4601
Karpova Radmila V., MD, Professor of the Department of Faculty Surgery No1 of N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation. https://orcid.org/0000-0003-0608-9846

S.A. PLAKSIN

DIAGNOSIS AND TREATMENT OF HEMOTHORAX IN BLUNT CHEST TRAUMA. A REVIEW OF THE LITERATURE

Perm State Medical University named after Academician E.A. Wagner, Perm,
Russian Federatin

Hemothorax occurs in 15-58% of cases of blunt chest trauma. Computed tomography and echosonography data improved the diagnosis and changed the tactics of treating hemothorax. The presented literature review is devoted to topical issues of comparative assessment of routine x-ray examination and new methods for recognition of hemothorax and changes of surgical tactics according to the obtained results. Criteria of hemothorax classification i.e. acute, retained, late and latent are described. Up to 28-80% of hemothoraxes not found during radiography turn out to be revealed on computer tomography. Conservative treatment and dynamic monitoring is possible in the cases of a small hemothorax, based on the quantitative results of the separation of the pleura sheets according to ultrasound and computed tomography. Videothoracoscopy has been reported as a useful approach in the management of patients with stable hemodynamic conditions for persistent, residual, late, clotted hemothorax or in the cases of other interventions in the pleural cavity. The best results of thoracoscopy are noted in the first 48-72 hours after an injury. If a patient is actively bleeding and remains hemodynamically unstable, thoracotomy is the procedure of choice. The frequency of drainage complications of the pleural cavity is 19% and remains at the same level. They are divided into complications of insertion, malposition, removal, infectious-immunological and functioning of the drainage. Multiple reports have suggested that smaller bore tubes may be just as effective as larger bore tubes. Video-assisted thoracoscopy is used to treat clotted hemothorax; the possibility to evacuate a retained hemothorax successfully by administration of intrapleural fibrinolytic agents and fresh frozen plasma has resulted in resolution of clotted hemothoraxi has been demonstrated.

Keywords: blunt chest trauma, hemothorax, thoracoscopy, computed tomography, ultrasound, tube thoracostomy, chest injury
p. 157-165 of the original issue
References
  1. Bertoglio P, Guerrera F, Viti A, Terzi AC, Ruffini E, Lyberis P, Filosso PL. Chest drain and thoracotomy for chest trauma. J Thorac Dis. 2019 Feb;11(Suppl 2):S186-S191. doi: 10.21037/jtd.2019.01.53
  2. Dogrul BN, Kiliccalan I, Asci ES, Peker SC. Blunt trauma related chest wall and pulmonary injuries: An overview. Chin J Traumatol. 2020 Jun;23(3):125-38. doi: 10.1016/j.cjtee.2020.04.003
  3. Mikailov US, Mamedov ZM, Dadashov SG, Ahadov DSh. Jetiologicheskaja struktura travmy grudnoj kletki u lic razlichnyh vozrastnyh grupp. Zhurn Teoret, Klin i Jeksperim Morfologii. 2021;(1-2):99-106. doi: 10.28942/jtcem.v3i1-2.173 (In Russ.)
  4. Tsai Y, Lin K, Huang T. Outcomes of patients with blunt chest trauma encountered at emergency department and possible risk factors affecting mortality. J Med Sci. 2017;37:97e101. doi: 10.4103/jmedsci.jmedsci_123_16
  5. Korobushkin GV, Shigeev SV, Zhukov AI. Analysis of causes of death in a sample of patients with polytrauma in Moscow. Polytrauma. 2020; 2:47-53. doi: 10.24411/1819-1495-2020-10019 (In Russ.).
  6. Korymasov E.A., Benyan A.S. Optimization of indications for thoracoscopy in chest trauma. Science and innovations in medicine. 2017;. 1 (5):. 65-72 https://innoscience.ru/2500-1388/article/download/21521/17761 (In Russ.)
  7. Chrysou K, Halat G, Hoksch B, Schmid RA, Kocher GJ. Lessons from a large trauma center: impact of blunt chest trauma in polytrauma patients-still a relevant problem? Scand J Trauma Resusc Emerg Med. 2017 Apr 20;25(1):42. doi: 10.1186/s13049-017-0384-y
  8. Akhadov TA, Karaseva OV, Melnikov IA, Kostikova TD, Akhlebinina MI, Ublinsky M.V. Multispiral computed tomography of the lungs in polytrauma in children. Medical Imaging. 2020; 24 (1): 96–104. doi: 10.24835/1607-0763-2020-1-96-104 (In Russ.)
  9. Beshay M, Mertzlufft F, Kottkamp HW, Reymond M, Schmid RA, Branscheid D, Vordemvenne T. Analysis of risk factors in thoracic trauma patients with a comparison of a modern trauma centre: a mono-centre study. World J Emerg Surg. 2020 Jul 31;15(1):45. doi: 10.1186/s13017-020-00324-1
  10. Malekpour M, Widom K, Dove J, Blansfield J, Shabahang M, Torres D, Wild JL. Management of computed tomography scan detected hemothorax in blunt chest trauma: What computed tomography scan measurements say? World J Radiol. 2018 Dec 28;10(12):184-89. doi: 10.4329/wjr.v10.i12.184
  11. Choi J, Villarreal J, Andersen W, Min JG, Touponse G, Wong C, Spain DA, Forrester JD. Scoping review of traumatic hemothorax: Evidence and knowledge gaps, from diagnosis to chest tube removal. Surgery. 2021 Oct;170(4):1260-67. doi: 10.1016/j.surg.2021.03.030
  12. Zeiler J, Idell S, Norwood S, Cook A. Hemothorax: A Review of the Literature. Clin Pulm Med. 2020 Jan;27(1):1-12. doi: 10.1097/CPM.0000000000000343
  13. Demetri L, Martinez Aguilar MM, Bohnen JD, Whitesell R, Yeh DD, King D, de Moya M. Is observation for traumatic hemothorax safe? J Trauma Acute Care Surg. 2018 Mar;84(3):454-58. doi: 10.1097/TA.0000000000001793
  14. Chang SW, Ryu KM, Ryu JW. Delayed massive hemothorax requiring surgery after blunt thoracic trauma over a 5-year period: complicating rib fracture with sharp edge associated with diaphragm injury. Clin Exp Emerg Med. 2018 Mar 30;5(1):60-65. doi: 10.15441/ceem.16.190. eCollection 2018 Mar.
  15. Kupriushin AS, Efimov AA, Loginov SN, Vishnyakova ZhS, Latynova IV, Semina MN, Godukhina EM. Clinical manifestations and forensic evaluation of hemothorax. Saratov Scientific Medical Journal. 2017; 13 (2): 221-224 https://elibrary.ru/download/elibrary_30724061_36487710.pdf (In Russ.)
  16. Gonzalez G, Robert C, Petit L, Biais M, Carrié C. May the initial CT scan predict the occurrence of delayed hemothorax in blunt chest trauma patients? Eur J Trauma Emerg Surg. 2021 Feb;47(1):71-78. doi: 10.1007/s00068-020-01391-4
  17. Parlak S, Beşler MS. Investigation of the relationship of the number, localization, and displacement of rib fractures with intrathoracic structures and abdominal solid organ complications using computed tomography. Eur J Trauma Emerg Surg. 2022 Feb;48(1):211-17. doi: 10.1007/s00068-020-01547-2
  18. Mancini M, Scanlin T, Serebrisky D. Hemothorax. Medscape [Internet]. 2019 [cited 2019 Dec 2] Available from: https://emedicine.medscape.com/article/2047916-overview
  19. Sopuev AA, Sultakeev MZ, Tashiev MM, Mambetov AK, Kasymbekov TM. Place of video-assisted and video-assisted thoracoscopic surgery in residual hemothorax. Scientific Review. 2021; 1:25-31 https://s.science-medicine.ru/pdf/2020/1/1097.pdf (In Russ.).
  20. Chang SW, Ryu KM, Ryu JW. Delayed massive hemothorax requiring surgery after blunt thoracic trauma over a 5-year period: complicating rib fracture with sharp edge associated with diaphragm injury. Clin Exp Emerg Med. 2018 Mar 30;5(1):60-65. doi: 10.15441/ceem.16.190. eCollection 2018 Mar.
  21. Dillon D.G., Rodriguez R.M. Screening performance of the chest X-ray in adult blunt trauma evaluation: Is it effective and what does it miss? Am J Emerg Med. 2021 Nov;49:310-14. doi: 10.1016/j.ajem.2021.06.034
  22. Bozzay J.D., Bradley M.J. Management of post-traumatic retained hemothorax. Trauma. 2019;21:14e20. doi: 10.1177/1460408617752985
  23. Chung MH, Hsiao CY, Nian NS, Chen YC, Wang CY, Wen YS, Shih HC, Yen DH. The Benefit of Ultrasound in Deciding Between Tube Thoracostomy and Observative Management in Hemothorax Resulting from Blunt Chest Trauma. World J Surg. 2018 Jul;42(7):2054-60. doi: 10.1007/s00268-017-4417-5
  24. Jahanshir A, Moghari SM, Ahmadi A, Moghadam PZ, Bahreini M. Value of point-of-care ultrasonography compared with computed tomography scan in detecting potential life-threatening conditions in blunt chest trauma patients. Ultrasound J. 2020 Aug 4;12(1):36. doi: 10.1186/s13089-020-00183-6
  25. Patel BH, Lew CO, Dall T, Anderson CL, Rodriguez R, Langdorf MI. Chest tube output, duration, and length of stay are similar for pneumothorax and hemothorax seen only on computed tomography vs. chest radiograph. Eur J Trauma Emerg Surg. 2021 Aug;47(4):939-47. doi: 10.1007/s00068-019-01198-y
  26. Rodriguez RM, Canseco K, Baumann BM, Mower WR, Langdorf MI, Medak AJ, Anglin DR, Hendey GW, Addo N, Nishijima D, Raja AS. Pneumothorax and hemothorax in the era of frequent chest computed tomography for the evaluation of adult patients with blunt trauma. Ann Emerg Med. 2019 Jan;73(1):58-65. doi: 10.1016/j.annemergmed.2018.08.423
  27. Gasymzade GSh. Comparative characteristics of computed tomography and radiography in the diagnosis of blunt chest trauma. Kazan Med Zhurn. 2020;101(6): 926-29. doi: 10.17816/KMJ2020-926 (In Russ.)
  28. Choi J, Villarreal J, Andersen W, Min JG, Touponse G, Wong C, Spain DA, Forrester JD. Scoping review of traumatic hemothorax: Evidence and knowledge gaps, from diagnosis to chest tube removal. Surgery. 2021 Oct;170(4):1260-67. doi: 10.1016/j.surg.2021.03.030
  29. Kim M, Moore JE. Chest Trauma: Current Recommendations for Rib Fractures,Pneumothorax, and Other Injuries. Curr Anesthesiol Rep. 2020;10(1):61-68. doi: 10.1007/s40140-020-00374-w
  30. Pumarejo GL, Tran VH. Hemothorax. 2022 Aug 8. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538219/
  31. Dokoupil M, Marecová K, Uvíra M, Joukal M, Mrázková E, Chmelová J, Handlos P. Fatal delayed hemopericardium and hemothorax following blunt chest trauma. Forensic Sci Med Pathol. 2019 Jun;15(2):272-75. doi: 10.1007/s12024-018-0069-5
  32. Malekpour M, Widom K, Dove J, Blansfield J, Shabahang M, Torres D, Wild JL. Management of computed tomography scan detected hemothorax in blunt chest trauma: What computed tomography scan measurements say? World J Radiol. 2018 Dec 28;10(12):184-89. doi: 10.4329/wjr.v10.i12.184
  33. Pikalo IA., Podkamenev VV, Mikhajlov N I, Semenov AV, Grigorev D S. Method for determination of volume of free liquid in pleural cavity.Detskaja Hirurgija. 2020;24(10): 65. (In Russ.)
  34. Sritharen Y, Hernandez MC, Haddad NN, Kong V, Clarke D, Zielinski MD, Aho JM. External Validation of a Tube Thoracostomy Complication Classification System. World J Surg. 2018 Mar;42(3):736-41. doi: 10.1007/s00268-017-4260-8
  35. Gilbert RW, Fontebasso AM, Park L, Tran A, Lampron J. The management of occult hemothorax in adults with thoracic trauma: A systematic review and meta-analysis. J Trauma Acute Care Surg. 2020 Dec;89(6):1225-32. doi: 10.1097/TA.0000000000002936
  36. Huang JF, Ou Yang CH, Cheng CT, Hsu CP, Wen CT, Liao CH, Hsieh CH, Fu CY. Could video-assisted thoracoscopic surgery be feasible for blunt trauma patients with massive haemothorax? Injury. 2022 Aug 14;S0020-1383(22)00589-7. doi: 10.1016/j.injury.2022.08.029
  37. Zaitsev DA, Movchan KN, Lishenko IV, Slobodkina AS, Kochetkov AV., Gedgafov RM., Rusakevich KI. The use of thoracoscopy under local anesthesia and proteolytic enzymes in the elimination of clotted hemothorax. Bulletin of St. Petersburg University. Medicine. 2018. 13( 3 ): 271-281. doi: 10.21638/11701/spbu11.2018.304 (In Russ.).
  38. Cejmah EA, Bondarenko AV, Men’shikov AA, Timoshnikova AA. Primenenie sovremennyh tehnologij v kompleksnom lechenii bol’nyh politravmoj s dominirujushhimi povrezhdenijami grudi. Bjul Med Nauki. 2017;(2):61-67. http://newbmn.asmu.ru/index.php/bmn/issue/view/19 (In Russ.).
  39. Huang JF, Hsu CP, Fu CY, Ou Yang CH, Cheng CT, Liao CH, Kuo IM, Hsieh CH. Is massive hemothorax still an absolute indication for operation in blunt trauma? Injury. 2021 Feb;52(2):225-30. doi: 10.1016/j.injury.2020.12.016
  40. Nascimento IKD, Morad HM, Perlingeiro JAG, Parreira JG, Assef JC. Predictors of pleural complications in trauma patients undergoing tube thoracostomy: A prospective observational study. Rev Col Bras Cir. 2022 Aug 22;49:e20223300. doi: 10.1590/0100-6991e-20223300-en. eCollection 2022. [Article in English, Portuguese]
  41. Mergan Iliklerden D, Çobanoğlu U, Say?r F, Iliklerden ÜH. Late complications due to thoracic traumas. Ulus Travma Acil Cerrahi Derg. 2022 Mar;28(3):328-35. doi: 10.14744/tjtes.2020.07242
  42. Grant HM, Knee A, Tirabassi MV. Factors Associated with Successful Video-Assisted Thoracoscopic Surgery and Thoracotomy in the Management of Traumatic Hemothorax. J Surg Res. 2022 Jan;269:83-93. doi: 10.1016/j.jss.2021.08.007
  43. Csonka Á, Dózsai D, Ecseri T, Gárgyán I, Csonka I, Varga E. Drainage data analysis of chest-injured patients. Orv Hetil. 2019 Feb;160(5):172-78. doi: 10.1556/650.2019.31252 [Article in Hungarian]
  44. Hernandez MC, El Khatib M, Prokop L, Zielinski MD, Aho JM. Complications in tube thoracostomy: Systematic review and meta-analysis. J Trauma Acute Care Surg. 2018 Aug;85(2):410-16. doi: 10.1097/TA.0000000000001840
  45. Tanizaki S, Maeda S, Sera M, Nagai H, Hayashi M, Azuma H, Kano KI, Watanabe H, Ishida H. Small tube thoracostomy (20-22 Fr) in emergent management of chest trauma. Injury. 2017 Sep;48(9):1884-87. doi: 10.1016/j.injury.2017.06.021
  46. Fortune JB, Murphy S, Tiller K. Optimal Initial Positioning of Chest Tubes to Prevent Retained Hemothorax Using a Novel Steerable Chest Tube With Extendable Infusion Cannula. Mil Med. 2021 Jan 25;186(Suppl 1):324-30. doi: 10.1093/milmed/usaa295
Address for correspondence:
614990, Russian Federation, Perm,
Petropavloskaya, st. 26,
Perm State Medical University
named after Academician E. A. Wagne,
Department of Surgery with a Course of Cardiovascular Surgery and Invasive Cardiology,
tel.: +7 342 239-29-72,
e-mail: splaksin@mail.ru,
Plaksin Sergey A.
Information about the authors:
Plaksin Sergei A, MD, Professor, Perm State Medical University named after Academician E.A. Wagner of the Ministry of Healthcare of the Russian Federation, Perm, Russian Federation.
http://orcid.org/0000-0001-8108-1655

CASE REPORTS

S.A. GOLOBOROD’KO 1, 2, O.E. GAVRYKOV 1, 2

ANOMALOUS ABDUCTOR OF THE POLLICIS LONGUS: CASE REPORT

Kharkov Medical Academy for Postgraduate Education 1,
KNP HOS “Regional Clinical Traumatological Hospital” 2, Kharkov,
Ukraine

In the article a clinical observation of a patient with an anomalous abductor pollicis longus is described.
Usually, one muscle belly of the abductor pollicis longus arises from the posterior surface of the ulna just distal to the place of attachment of the supinator muscle, from the interosseous membrane and the posterior surface of the radius, then passes in the form of a tendon through the first extensor fibro-osseous tunnel and inserts into the base of the first metacarpal bone. The abductor pollicis longus is innervated by the posterior interosseous nerve. However, there are many structural anatomical variations. The clinical case, which is described in the article, is an illustration of one unusual variant of the anatomical structure of the abductor pollicis longus. A 15-year-old girl complained of a tumor-like formation in the area of the thenar of the right hand, periodic pains at rest and significant during physical exertion, dysfunction of the hand. Instrumental methods for studying did not reveal any pathologic changes.. A preliminary clinical diagnosis was established: soft tissue tumor-like formation of the thumb of the right hand. During the operation it was revealed, that somewhat proximal to the carpometacarpal joint from the most radially located thenar muscle in the proximal direction a common tendon branched out, which was located in the first extensor fibro-osseous tunnel somewhat more radially than the tendon of the abductor pollicis longus. Atypical muscle belly in the distal direction continued to the metacarpophalangeal joint of the thumb. Ligamentotomy of the first extensor fibro-osseous tunnel was performed. A positive long-term result of the operation confirmed the accuracy of the chosen treatment tactic.

Keywords: anomalous abductor pollicis longus, clinical observation
p. 166-170 of the original issue
References
  1. Hiit Â, Seyhan Í, Wagner Ì, Zumhasch R, editors. Hand and wrist anatomy and biomechanics: A comprehensive guide. Stuttgart, New York, Delhi, Rio de Janeiro: Georg Thieme Verlag KG; 2017. 108 p.
  2. Cerqueira PC, Silveira D, Siqueira SL, Silva AT, Franco AG, Gama HVP, Sales MC, Casagrande MM, Oliveira BVM. Anomalous origin of the abductor pollicis longus (APL): clinical and surgical applications. J Morphol Sci. 2013;30 (3):152-55. http://www.jms. periodikos.com.br/article/587cb4bd7f8c9d0d058b4840/ pdf/jms-30-3-587cb4bd7f8c9d0d058b4840.pdf
  3. Iliev A, Georgiev GP, Kotov G, Landzhov B. The abductor pollicis longus tendon as grafting material for reconstructive surgery of the hand. Acta Morphol. Anthropol (Sofia);2017;24(1-2):68-73. http://www.iempam. bas.bg/journals/acta/acta24/68-73.pdf
  4. Karauda P, Olewnik L, Podgórski M, Polguj M, Ruzik K, Szewczyk B, Topol M. Anatomical variations of the abductor pollicis longus: a pilot study. Folia Morphol (Warsz). 2020;79(4):817-22. doi: 10.5603/FM.a2019.0134
  5. Mishall PL, Marsh AN, Perez D, Quezada XH, Stahl MC, Weinstock RE, Downie SA. Novel, bilateral, two-bellied muscles span the extensor forearm, thenar eminence to insert on the proximal phalanx of the thumb: clinical and embryological significance. Folia Morphol (Warsz). 2020;79(1):182-87. doi: 10.5603/FM.a2019.0067
  6. Rayan GM, Mustafa E. Anomalous abductor pollicis longus insertion in the thenar muscles. J Hand Surg Am. 1989 May;14(3):550-52. doi: 10.1016/s0363-5023(89)80023-1
  7. Elliott BG. Abductor pollicis longus: a case of mistaken identity. J Hand Surg Br. 1992 Aug;17(4):476-78. doi: 10.1016/s0266-7681(05)80278-5
  8. Rai R, Ranade AV, Mamatma T, Jui PJ, D’Costa S, Maneshvary C. A rare origin of abductor pollicis longus. Rom J Morphol Embryol. 2010;51(2):399-400. https://rjme.ro/RJME/resources/files/510210399400.pdf
  9. Soni G, Kumar BR. Bilateral double bellies of abductor pollicis longus. Int J Anat Res. 2017:5(Is.4.2): 4566-69. doi: 10.16965/ ijar.2017.397
  10. El-Beshbishy RA, Abdel-Hamid GA. Variations of the abductor pollicis longus tendon: an anatomic study. Folia Morphol (Warsz). 2013 May;72(2):161-66. doi: 10.5603/fm.2013.0027
  11. Ranade AV, Rai R, Murlimanju BV, Eladl MA. Atypical insertion of the abductor pollicis longus muscle, an anatomical case report. Ital J Anat Embryol. 2017;122(2):147-50. doi: 10.13128/IJAE-21319
  12. Macalister A. Additional observations on muscular anomalies in human anatomy (third series), with a catalogue of the principal muscular variations hitherto published. Trans Roy Irish Acad. 1875;25:1-130. http://www.jstor.org/stable/30079154
  13. Shetty P, Nayak SB. Additional digastric muscle associated with abductor pollicis longus muscle. OA Case Reports 2014 May 15;3(5):43.
  14. Rabi S, Indrasingh I, Koshy S, Holla SJ, Vettivel S. An accessory digastric abductor pollicis longus muscle: report of a case. Eur J Anat. 2006;10(2):79-81. https://www.researchgate.net/publication/28183585_ An_accessory_digastric_abductor_pollicis_longus_ muscle_Report_of_a_case
Address for correspondence:
61145, Ukraine,
Kharkov, ul. Novgorodskaya 8, kv. 31,
ó-mail: golosa@ukr.net,
tel: +38-068-919-89-14,
Goloborod’ko Sergey A.
Information about the authors:
Goloborod’ko Sergey A., MD, An Associate Professor, Kharkov Medical Academy for Postgraduate Education, Department of Combustiology, Reconstructive and Plastic Surgery; Orthopedic Traumatologist, KNP HOS “Regional Clinical Traumatological Hospital”, Kharkîv, Ukraine.
https://orcid.org/0000-0002-0153-8158
Gavrykov Oleksandr E., MD, An Associate Professor, Kharkov Medical Academy for Postgraduate Education, Department of Emergency Care and Disaster Medicine Director, KNP HOS “Regional Clinical Traumatological Hospital”, Kharkîv, Ukraine.
https://orcid.org/0000-0002-6711-3689
Contacts | ©Vitebsk State Medical University, 2007-2023