2021 г. №3 Том 29

ОБЗОРЫ

А.В. КАДОМЦЕВА, П.А. ЗАРУБЕHКО, Л.Б. ЛОГИHОВА

РОЛЬ ИММОБИЛИЗОВАHHЫХ МЕТАЛЛООРГАHИЧЕСКИХ СОЕДИHЕHИЙ В КОМПЛЕКСHОМ ЛЕЧЕHИИ ГHОЙHО-ВОСПАЛИТЕЛЬHЫХ ПРОЦЕССОВ КОЖИ И МЯГКИХ ТКАHЕЙ

Приволжский исследовательский медицинский университет, г. Нижний Новгород,
Российская Федерация

Цель. Изучить современную российскую и зарубежную литературу, посвященную применению лекарственных препаратов и соединений, иммобилизованных металлоорганической матрицей, при лечении гнойно-воспалительных процессов кожи и мягких тканей.
Материал и методы. Проведен обзор современной русской и зарубежной литературы, доступной в базах Pubmed, Medline, Springer, Scopus, E-library, по таким темам, как гнойно-воспалительные заболевания, инфекции кожи и мягких тканей, комплексный подход в лечении гнойно-воспалительных заболеваний, синтез, иммобилизованные металлоорганические соединения.
Результаты. Представлен обзор последних достижений в области модификации антимикробных биоматериалов. Доказано, что ионы металлов оказывают положительное влияние на все фазы раневого процесса, особенно на пролиферацию и ремоделирование, обладают бактериостатическим и бактерицидным действием, проявляют многократное ингибирующее действие на бактериальные штаммы. Природные продукты и особенно биологически активные металлы, такие как серебро, медь, цинк и германий, представляют собой альтернативу для разработки перспективных биоматериалов с антимикробными свойствами. В последние годы развивается новый подход к получению терапевтических и диагностических препаратов, основанный на иммобилизации или прививке лекарственных веществ на полимерных носителях. В настоящее время именно иммобилизованные соединения открыли путь к созданию лекарственных препаратов пролонгированного действия с пониженной токсичностью и аллергенностью.
Заключение. Темплатный синтез новых лекарственных препаратов на основе металлоорганических соединений считается перспективным направлением в лечении раневой инфекции, которое требует дальнейшего экспериментального и клинического изучения.

Ключевые слова: гнойно-воспалительные процессы, металлоорганические каркасы, наночастицы, иммобилизованные соединения, биометаллы, синтез
с. 334-346 оригинального издания
Список литературы
  1. Ostapiuk L. Analysis of the Risk Factors of the Development of Purulent-Inflammatory Diseases. Online Journal of Gynecology and Reproductive Medicine. 2020;1(1):1-3.
  2. Stevens DL, Bryant AE. Necrotizing Soft-Tissue Infections. N Engl J Med. 2017 Dec 7;377(23):2253-65. doi: 10.1056/NEJMra1600673
  3. Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, Car J. The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev. 2017;6:15. Published online 2017 Jan 24. doi: 10.1186/s13643-016-0400-8
  4. Третьяков АА, Петров СВ, Неверов АН, Щетинин АФ. Лечение гнойных ран. Новости Хирургии. 2015;23(6):680-87. doi: http://dx.doi.org/10.18484/2305-0047.2015.6.680
  5. Hua C, Sbidian E, Hemery F, Decousser JW, Bosc R, Amathieu R, Rahmouni A, Wolkenstein P, Valeyrie-Allanore L, Brun-Buisson C, de Prost N, Chosidow O. Prognostic factors in necrotizing soft-tissue infections (NSTI): A cohort study. J Am Acad Dermatol. 2015 Dec;73(6):1006-12.e8. doi: 10.1016/j.jaad.2015.08.054
  6. Yamamoto L.G. Treatment of Skin and Soft Tissue Infections. Pediatr Emerg Care. 2017 Jan;33(1):49-55. doi: 10.1097/PEC.0000000000001001
  7. Кадомцева АВ, Жданович ИВ, Пискунова МС, Линева АН, Новикова АН, Логинов ПА. Оценка токсичности координационных соединений германия. Токсикол Вестн. 2019;(2):16-21. doi: 10.36946/0869-7922-2019-2-16-21
  8. Hadeed GJ, Smith J, O’Keeffe T, Kulvatunyou N, Wynne JL, Joseph B, Friese RS, Wachtel TL, Rhee PM, El-Menyar A, Latifi R. Early surgical intervention and its impact on patients presenting with necrotizing soft tissue infections: A single academic center experience. J Emerg Trauma Shock. 2016 Jan-Mar;9(1):22-27. doi: 10.4103/0974-2700.173868
  9. Chhabra S, Chhabra N, Kaur A, Gupta N. Wound Healing Concepts in Clinical Practice of OMFS. J Maxillofac Oral Surg. 2017 Dec;16(4):403-423. doi: 10.1007/s12663-016-0880-z
  10. Шапринський ВО, Римша ОВ, Мітюк БО, Вовк ІМ, Назарчук СА, Ходаківський МА, Іванова МО. Дослідження чутливості збудників гнійно-запальних процесів середостіння до сучасних антисептиків. Вісник Вінницького Національного Медичного Університету. 2020;24(1):69-74. doi: 10.31393/reports-vnmedical-2020-24(1)-13
  11. Abd-El-Aziz AS, Agatemor C, Etkin N. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials. 2017 Feb;118:27-50. doi: 10.1016/j.biomaterials.2016.12.002
  12. Hassan D, Fasiku VO, Madu SJ, Muazu J. Chapter 6 Biodegradable Antibiotics in Wound Healing. In: Kokkarachedu V, Kanikireddy V, Sadiku R, editors. Antibiotic Materials in Healthcare. 1st. Academic Press; 2020. р. 93-110. doi: 10.1016/B978-0-12-820054-4.00006-9
  13. Kosmala K, Szymańska R. Nanoczastki tlenku tytanu (IV). Otrzymywanie, własciwosci i zastosowanie. Kosmos. 2016;65(2):235-45. http://kosmos.icm.edu.pl/PDF/2016/235.pdf
  14. Bari SS, Mishra S. Chapter 23 - Recent Advances in nanostructured polymer composites for biomedical applications. In: Swain SK, Jawaid M, editors. Nanostructured polymer composites for biomedical applications. 2019 Elsevier Inc; 2019. р. 489-506. doi: 10.1016/B978-0-12-816771-7.00024-7
  15. Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel). 2018 Jan;10(1):31. Published online 2018 Jan 2. doi: 10.3390/polym10010031
  16. Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019 Jun;146:209-39. doi: 10.1016/j.addr.2018.12.014
  17. Lin CY, Lin SJ, Yang YC, Wang DY, Cheng HF, Yeh MK. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Hum Vaccin Immunother. 2015 Mar;11(3):650-56. doi: 10.1080/21645515.2015.1009345
  18. Fumakia M, Ho EA. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol Pharm. 2016 Jul 5;13(7):2318-31. doi: 10.1021/acs.molpharmaceut.6b00099
  19. Kalita S, Kandimalla R, Devi B, Kalita B, Kalita K, Deka M, Kataki AC, Sharmaf A, Kotoky J. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactone–Pluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Advances. 2017;7(3):1749-58. doi: 10.1039/c6ra26561h
  20. Pereira GG, Detoni CB, Balducci AG, Rondelli V, Colombo P, Guterres SS, Sonvico F. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds. Eur J Pharm Sci. 2016 Feb 15;83:203-11. doi: 10.1016/j.ejps.2016.01.002
  21. Patrulea V, Laurent-Applegate LA, Ostafe V, Borchard G, Jordan O. Polyelectrolyte nanocomplexes based on chitosan derivatives for wound healing application. Eur J Pharm Biopharm. 2019 Jul;140:100-108. doi: 10.1016/j.ejpb.2019.05.009
  22. Oyarzun-Ampuero F, Vidal A, Concha M, Morales J, Orellana S, Moreno-Villoslada I. Nanoparticles for the treatment of wounds. Curr Pharm Des. 2015;21(29):4329-41. doi: 10.2174/1381612821666150901104601
  23. Yu Y, Chen G, Guo J, Liu Y, Ren J, Kong T, Zhao Y. Vitamin metal–organic framework-laden microfibers from microfluidics for wound healing. Materials Horizons. 2018;5(6):1137-42. doi: 10.1039/C8MH00647D
  24. Alavijeh RK, Beheshti S, Akhbari K, Morsali A. Investigation of reasons for metal-organic framework’s antibacterial activities. Polyhedron. 2018 Dec 1;156:257-78. doi: 10.1016/j.poly.2018.09.028
  25. Cai W, Wang J, Chu C, Chen W, Wu C, Liu G. Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv Sci (Weinh). 2018 Nov 20;6(1):1801526. doi: 10.1002/advs.201801526. eCollection 2019 Jan 9.
  26. Довнар РИ, Смотрин СМ, Васильков АЮ, Жмакин АИ. Антибактериальный и противомикробный эффект перевязочного материала, содержащего наночастицы серебра. Новости Хирургии. 2010;18(6):3-11. http://www.surgery.by/pdf/full_text/2010_6_1_ft.pdf
  27. Ximing G, Bin G, Yuanlin W, Shuanghong G. Preparation of spherical metal-organic frameworks encapsulating ag nanoparticles and study on its antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2017 Nov 1;80:698-707. doi: 10.1016/j.msec.2017.07.027
  28. Shakya S, He Y, Ren X, Guo T, Maharjan A, Luo T, Wang T, Dhakhwa R, Regmi B, Li H, Gref R, Zhang J. Ultrafine silver nanoparticles embedded in cyclodextrin metal-organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application. Small. 2019;15(27):e1901065. doi: 10.1002/smll.201901065
  29. Medici S, Peana M, Crisponi G, Nurchi VM, Lachowicz JI, Remelli M, Zoroddu MA, Remelli M. Silver coordination compounds: A new horizon in medicine. Coord Chem Rev. 2016;327:349-59. https://www.academia.edu/30868765/Silver_coordination_compounds_A_new_horizon_in_medicine
  30. Shi G, Chen W, Zhang Y, Dai X, Zhang X, Wu Z. An Antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing. Langmuir. 2019 Feb 5;35(5):1837-45. doi: 10.1021/acs.langmuir.8b01834
  31. Mofidfar M, Kim ES, Larkin EL, Long L, Jennings WD, Ahadian S, Ghannoum MA, Wnek GE. Antimicrobial Activity of Silver Containing Crosslinked Poly(Acrylic Acid) Fibers. Micromachines (Basel). 2019 Nov 28;10(12):829. doi: 10.3390/mi10120829
  32. Sheta SM, El-Sheikh SM, Abd-Elzaher MM. Simple synthesis of novel copper metal-organic framework nanoparticles: biosensing and biological applications. Dalton Trans. 2018 Apr 3;47(14):4847-55. doi: 10.1039/c8dt00371h
  33. Jo JH, Kim HC, Huh S, Kim Y, Lee DN. Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands. Dalton Trans.2019;48(23):8084-93. doi: 10.1039/c9dt00791a
  34. Ren X, Yang C, Zhang L, Li S, Shi S, Wang R, Zhang X, Yue T, Sun J, Wang J. Copper metal-organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale. 2019;11(24):11830-838. doi: 10.1039/c9nr03612A
  35. Ashfaq M, Verma N, Khan S. Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:938-47. doi: 10.1016/j.msec.2015.10.079
  36. Tamames-Tabar C, Imbuluzqueta E, Guillou N, Serre C, Miller SR, Elkaïm E, Horcajada Р, Blanco-Prieto MJ. A Zn azelate MOF: combining antibacterial effect. Cryst Eng Comm. 2015;17:456-62. doi: 10.1039/C4CE00885E
  37. Gutha Y, Pathak JL, Zhang W, Zhang Y, Jiao X. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol. 2017 Oct;103:234-41. doi: 10.1016/j.ijbiomac.2017.05.020
  38. Straccia MC, d’Ayala GG, Romano I, Laurienzo P. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity. Carbohydr Polym. 2015 Jul 10;125:103-12. doi: 10.1016/j.carbpol.2015.03.010
  39. Haugen HJ, Lyngstadaas SP. Antibacterial effects of titanium dioxide in wounds. In: Ågren MS, ed. Wound healing biomaterials – Vol. 2. 1st ed. Woodhead Publishing; 2016. р. 439-50. doi: 10.1016/B978-1-78242-456-7.00021-0
  40. Verma R, Chaudhary VВ, Nain L, Srivastava AK. Antibacterial characteristics of TiO2 nano-objects and their interaction with biofilm. Mater Technol. 2017;32(6):385-90. doi: 10.1080/10667857.2016.1236515
  41. Gerber GB, Léonard A. Mutagenicity, carcinogenicity and teratogenicity of germanium compounds. Mutat Res. 1997 Dec;387(3):141-46. doi: 10.1016/s1383-5742(97)00034-3
  42. Верещагина ЯА, Алимова АЗ, Чачков ДВ, Ишмаева ЭА, Кочина ТА. Полярность и строение 1,1-дигалогено-2, 8-диокса-5-азагермоканов. Журн Орган Химии. 2015;51(5):765-66. http://www.chachkov.ru/mediawiki/images/c/c3/Russian_Journal_of_Organic_Chemistry-2015_N5_Vereshchagina_ru.pdf
  43. Unakar NJ, Tsui J, Johnson M. Effect of pretreatment of germanium-132 on Na(+)-K(+)-ATPase and galactose cataracts. Curr Eye Res. 1997 Aug;16(8):832-37. doi: 10.1076/ceyr.16.8.832.8980
  44. Ogwapit S.M. Analysis of Ge-132 and development of a simple oral anticancer formulation. Biosci Horiz. 2011 Jun;4(2):128-39. doi: 10.1093/biohorizons/hzr015
  45. Назаров ЕА, Кузьманин СА. О некоторых биоактивных покрытиях имплантатов. Рос Мед-Биол Вестн им Акад ИП Павлова. 2016;24(1):149-54. doi: 10.17816/PAVLOVJ20161149-154
  46. Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid. 1992 Jan;27(1):72-79. doi: 10.1016/0147-619x(92)90008-x
  47. Уколова НЮ, Суркичин СИ, Матело СК, Исаев АД, Амбросов ИВ, Дирш АВ, Косткина ЕА. Германийорганические пилинги: методика применения, оценка эффективности. Клин Дерматология и Венерология. 2017;16(1):49-56. doi: 10.17116/klinderma201716149-56
  48. Уколова НЮ, Матело СК, Исаев АД, Амбросов ИВ, Дирш АВ, Косткина ЕА. Инновационные интрадермальные имплантаты и другие препараты, содержащие германийорганический комплекс, методы их введения и результаты воздействия на различные слои кожи. Клин Дерматология и Венерология. 2018;17(5):151-57. doi: 10.17116/klinderma201817051151
  49. Тымчишин ОЛ. Гепатопротективная активность нового германийорганического биологически активного вещества (медгерм) при экспериментальном гепатите. Казан Мед Журн. 2013;94(5):628-32. doi: 10.17816/KMJ1905
  50. Карал-Оглы ДД, Агрба ВЗ, Лаврентьева ИН, Амбросов ИВ, Матело СК, Чугуев ЮП, Гварамия ИА, Гвоздик ТЕ, Мухаметзянова ЕИ. Показатели физиологических параметров обезьян Macaca fascicularis, иммунизированных против вируса краснухи с адъювантами на основе германия. Вестн Эксперим Биологии и Медицины. 2014;157(1):81-84. doi: 10.1007/s10517-014-2497-x
  51. Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. Lupus. 2012 Feb;21(2):223-30. doi: 10.1177/0961203311430221
  52. Wang QM, Huang RQ. Synthesis and biological activity of novel N-tert-butyl-N,N-substitutedbenzoylhydrazines containing 2-methyl-3-(triphenylgermanyl) propoxycarbony. Appl Organometal Chem. 2002;16(10):593-96. doi: 10.1002/aoc.351
  53. Swami M, Singh RV. Sulfur-Bonded Organogermanium (IV) Complexes of Biopotent Bases and Their Antiandrogen and Biocidal Properties. Phosphorus Sulfur Silicon Relat Elem. 2008;183(6):1350-64. doi: 10.1080/10426500701641452
  54. Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, Ji X, Xie T, Farokhzad OC, Tao W. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter. 2020 Jul;3(1):127-44. doi: 10.1016/j.matt.2020.04.022
Адрес для корреспонденции:
603950, Российская Федерация,
г. Нижний Новгород,
пл. Минина и Пожарского, д.10/1,
Приволжский исследовательский
медицинский университет,
кафедра общей химии,
тел.: +7(910)872-41-51,
e-mail: kadomtseva@pimunn.ru,
Кадомцева Алёна Викторовна
Cведения об авторах:
Кадомцева Алёна Викторовна, к.х.н., старший преподаватель кафедры общей химии, Приволжский исследовательский медицинский университет, г. Нижний Новгород, Российская Федерация.
http://orcid.org/0000-0002-6962-0625
Логинова Любовь Борисовна, заведующий лабораторией кафедры общей химии, Приволжский исследовательский медицинский университет, г. Нижний Новгород, Российская Федерация.
https://orcid.org/0000-0002-4917-2802
Зарубенко Полина Александровна, ассистент кафедры общей, оперативной хирургии и топографической анатомииим. А.И. Кожевникова, Приволжский исследовательский медицинский университет, г. Нижний Новгород, Российская Федерация.
https://orcid.org/0000-0001-7288-8625
Контакты | ©Витебский государственный медицинский университет, 2007-2023