Year 2017 Vol. 25 No 6

REVIEWS

R.E. KALININ, I.A. SUCHKOV, N.D. MZHAVANADZE, E.A. KLIMENTOVA, S.A. ISAKOV, A.N. RYABKOV, R.M. VORONIN

IMPACT OF INTRINSIC COAGULATION PATHWAY FACTORS ACTIVITY AND HEMOSTATIC MARKERS OF ENDOTHELIAL DYSFUNCTION ON THROMBOTIC COMPLICATIONS IN PATIENTS WITH ATHEROSCLEROTIC PERIPHERAL ARTERIAL DISEASE

FSBEE HE Ryazan State Medical University named after Academician I.P. Pavlov, Ryazan
The Russian Federation

Modern vascular surgery has various options for performing open and percutaneous endovascular interventions aimed to treat patients with peripheral arterial disease. One of the most common complications of surgical interventions is thrombosis. According to different authors data, postoperative thrombosis develops in 60-90% of cases, especially when performing distal reconstructions. The coagulating blood system plays the main role in the development of thrombotic complications. The effect of the extrinsic pathway of the coagulation cascade on the process of thrombus formation in patients with peripheral atherosclerosis is widely covered and investigated, which facilitated the introduction of a variety of antithrombotic drugs. The intrinsic pathway has always been considered less important. Nowadays, the internal pathway is of considerable interest from the point of view of the development of thromboses and the pathogenesis of inflammatory processes. With a high level of XI, IX factors, the risk of thrombotic complications increases, their newest inhibitors have been developed. XII and VIII factors are not well understood. No less important role in the development of thrombosis belongs to haemostatic markers of endothelial dysfunction, such as von Willebrand factor (WF), plasminogenactivator inhibitor-1 (PAI-1), protein C (PRC) and its endothelial receptor. Changes in hemostatic markers of the endothelial dysfunction in the postoperative period, such as an increased PV and PAI-1 and deficiency of PRC, play a significant role in the development of thrombotic complications and may determine the patency of vascular reconstructions. Further study in this direction permits to establish the predictors of thrombotic complications and to develop algorithms for optimal antithrombotic therapy.

Keywords: atherosclerosis, intrinsic coagulation pathway, hemostatic markers of endothelial dysfunction, thrombotic complications, antithrombotic therapy
p. 643-654 of the original issue
References
  1. Dua A, Lee CJ. Epidemiology of Peripheral Arterial Disease and Critical Limb Ischemia. Tech Vasc Interv Radiol. 2016 Jun;19(2):91-95. doi: 10.1053/j.tvir.2016.04.001.
  2. Sigvant B, Lundin F, Wahlberg E. The Risk of Disease Progression in Peripheral Arterial Disease is Higher than Expected: A Meta-Analysis of Mortality and Disease Progression in Peripheral Arterial Disease. Eur J Vasc Endovasc Surg. 2016 Mar;51(3):395-403. doi: 10.1016/j.ejvs.2015.10.022.
  3. Ye W, Liu CW, Ricco JB, Mani K, Zeng R, Jiang J. Early and late outcomes of percutaneous treatment of TransAtlantic Inter-Society Consensus class C and D aorto-iliac lesions. J Vasc Surg. 2011 Jun;53(6):1728-37. doi: 10.1016/j.jvs.2011.02.005.
  4. Kalinin RE, Suchkov IA, Pshennikov AS, Slepnev AA. Effektivnost L-arginina v lechenii ateroskleroza arterii nizhnikh konechnostei i profilaktike restenoza zony rekonstruktsii [Efficiency of L-arginine in the treatment of atherosclerosis of the arteries of the lower extremities and the prevention of restenosis of the reconstruction zone]. Vestn Ivan Med Akad. 2013;18(2):18-21.
  5. Asher E, Pokrovskii AV, red. Sosudistaia khirurgiia po Khaimovichu [Vascular surgery in the manner of Haimovich]: v 2 t. T. 1 = Haimovicis Vascular Surgery. 2-e izd. (el.). Moscow, RF: BINOM. Laboratoriia znanii; 2012. 646 p.
  6. Pokrovskii AV. Klinicheskaia angiologiia [Clinical Angiology]: ruk v 2 t. Moscow, RF: Meditsina; 2004;2. 203 p.
  7. Suchkov IA, Pshennikov AS, Gerasimov AA, Agapov AB, Kamaev AA. Profilaktika restenoza v rekonstruktivnoi khirurgii magistralnykh arterii [Prevention of restenosis in reconstructive surgery of the main arteries]. Nauka Molodykh - Eruditio Juvenium. 2013;(2):12-19.
  8. Kuijpers MJ, van der Meijden PE, Feijge MA, Mattheij NJ, May F, Govers-Riemslag J, et al. Factor XII regulates the pathological process of thrombus formation on ruptured plaques. Arterioscler Thromb Vasc Biol. 2014 Aug;34(8):1674-80. doi: 10.1161/ATVBAHA.114.303315.
  9. Dahlbäck B. Blood coagulation. Lancet. 2000 6 May;355(9215):1627-32. doi: 10.1016/S0140-6736(00)02225-X.
  10. Cushman M, OMeara ES, Folsom AR, Heckbert SR. Coagulation factors IX through XIII and the risk of future venous thrombosis: the Longitudinal Investigation of Thromboembolism Etiology. Blood. 2009 Oct 1;114(14):2878-83. doi: 10.1182/blood-2009-05-219915.
  11. Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately? Blood. 2009 Sep 17;114(12):2367-74. doi: 10.1182/blood-2009-05-199208.
  12. Kuhli C, Scharrer I, Koch F, Ohrloff C, Hattenbach LO. Factor XII deficiency: a thrombophilic risk factor for retinal vein occlusion. Am J Ophthalmol. 2004 Mar;137(3):459-64.
  13. Girolami A, Randi ML, Gavasso S, Lombardi AM, Spiezia F. The occasional venous thromboses seen in patients with severe (homozygous) FXII deficiency are probably due to associated risk factors: a study of prevalence in 21 patients and review of the literature. J Thromb Thrombolysis. 2004 Apr;17(2):139-43.
  14. Zeerleder S, Schloesser M, Redondo M, Wuillemin WA, Engel W, Furlan M, et al. Reevaluation of the incidence of thromboembolic complications in congenital factor XII deficiencya study on 73 subjects from 14 Swiss families. Thromb Haemost. 1999 Oct;82(4):1240-46.
  15. Yazdani-Biuki B, Krippl P, Brickmann K, Fuerst F, Langsenlehner U, Paulweber B, et al. The functional promoter polymorphism of the coagulation factor XII gene is not associated with peripheral arterial disease. Angiology. 2010 Feb;61(2):211-15. doi: 10.1177/0003319709337305.
  16. Kleinschnitz C, Stoll G, Bendszus M, Schuh K, Pauer HU, Burfeind P, et al. Targeting coagulation factor XII provides protection from pathological thrombosis in cerebral ischemia without interfering with hemostasis. J Exp Med. 2006 Mar 20;203(3):513-18. doi: 10.1084/jem.20052458.
  17. Von dem Borne PA, Cox LM, Bouma BN. Factor XI enhances fibrin generation and inhibits fibrinolysis in a coagulation model initiated by surface-coated tissue factor. Blood Coagul Fibrinolysis. 2006 Jun;17(4):251-57.
  18. Chan JCY, Ganopolsky JG, Cornelissen I, Suckow MA, Sandoval-Cooper MJ, Brown EC, et al. The characterization of mice with a targeted combined deficiency of protein C and factor XI. Am J Pathol. 2001 Feb;158(2):469-79. doi: 10.1016/S0002-9440(10)63989-2.
  19. Minnema MC, Peters RJ, de Winter R, Lubbers YP, Barzegar S, Bauer KA, et al. Activation of clotting factors XI and IX in patients with acute myocardial infarction. Arterioscler Thromb Vasc Biol. 2000 Nov;20(11):2489-93.
  20. Yang DT, Flanders MM, Kim H, Rodgers GM. Elevated factor XI activity levels are associated with an increased odds ratio for cerebrovascular events. Am J Clin Pathol. 2006 Sep;126(3):411-15.
  21. Smith LM 2nd, Orwat MJ, Hu Z, Han W, Wang C, Rossi KA, et al. Novel phenylalanine derived diamides as Factor XIa inhibitors. Bioorg Med Chem Lett. 2016 Jan 15;26(2):472-78. doi: 10.1016/j.bmcl.2015.11.089.
  22. Spanier TB, Oz MC, Madigan JD, Rose EA, Stern DM, Nowygrod R, et al. Selective anticoagulation with active site blocked factor IXa in synthetic patch vascular repair results in decreased blood loss and operative time. ASAIO J. 1997 Sep-Oct;43(5):M526-30.
  23. Rosendaal FR, Briët E, Stibbe J, van Herpen G, Leuven JA, Hofman A, et al. Haemophilia protects against ischaemic heart disease: a study of risk factors. Br J Haematol. 1990 Aug;75(4):525-30.
  24. Heikal NM, Murphy KK, Crist RA, Wilson AR, Rodgers GM, Smock KJ. Elevated factor IX activity is associated with an increased odds ratio for both arterial and venous thrombotic events. Am J Clin Pathol. 2013 Nov;140(5):680-85. doi: 10.1309/AJCPAGOR4Q2IIKUG.
  25. Howard EL, Becker KC, Rusconi CP, Becker RC. Factor IXa inhibitors as novel anticoagulants. Arterioscler Thromb Vasc Biol. 2007 Apr;27(4):722-27.
  26. Zanolini D, Merlin S, Feola M, Ranaldo G, Amoruso A, Gaidano G, et al. Extrahepatic sources of factor VIII potentially contribute to the coagulation cascade correcting the bleeding phenotype of mice with hemophilia A. Haematologica. 2015 Jul;100(7):881-92. doi: 10.3324/haematol.2014.123117.
  27. Lijfering WM, Veeger NJ, Brouwer JL, van der Meer J. The risk of venous and arterial thrombosis in hyperhomocysteinemic subjects may be a result of elevated factor VIII levels. Haematologica. 2007 Dec;92(12):1703-6.
  28. Jacquemin M, Stassen JM, Saint-Remy JM, Verhamme P, Lavendhomme R, VanderElst L, et al. A human monoclonal antibody inhibiting partially factor VIII activity reduces thrombus growth in baboons. J Thromb Haemost. 2009 Mar;7(3):429-37. doi: 10.1111/j.1538-7836.2008.03271.x.
  29. Jenkins PV, Rawley O, Smith OP, ODonnell JS. Elevated factor VIII levels and risk of venous thrombosis. Br J Haematol. 2012 Jun;157(6):653-63. doi: 10.1111/j.1365-2141.2012.09134.x.
  30. Cortellaro M, Boschetti C, Cofrancesco E, Zanussi C, Catalano M, de Gaetano G, et al. The PLAT Study: hemostatic function in relation to atherothrombotic ischemic events in vascular disease patients. Arterioscler Thromb. 1992; 12(9):1063-70.
  31. Sartori M, Conti E, Favaretto E, Frascaro M, Legnani C, Palareti G. Thrombotic risk factors and cardiovascular events after endovascular intervention for peripheral arterial disease. Thrombotic risk factors and cardiovascular events after endovascular intervention for peripheral arterial disease. Eur J Vasc Endovasc Surg. 2011 Dec;42(6):817-23. doi: 10.1016/j.ejvs.2011.08.016.
  32. Babichev AV. Rol endoteliia v mekhanizmakh gemostaza [The role of the endothelium in the mechanisms of hemostasis]. Pediatr. 2013; 4(1):122-27.
  33. Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015 Oct 19;15:130. doi: 10.1186/s12872-015-0124-z.
  34. Likhacheva EA, Polyanskaya TYu., Zorenko VYu. Mezhdunarodnyi opyt diagnostiki bolezni Villebranda [The diagnosis and treatment of von Willebrands disease: International experience]. Gematologiia i Tranfuziologiia. 2013; 58(4):45-49.
  35. Sanders YV, Eikenboom J, de Wee EM, van der Bom JG, Cnossen MH, Degenaar-Dujardin ME, et al. Reduced prevalence of arterial thrombosis in von Willebrand disease. J Thromb Haemost. 2013 May;11(5):845-54. doi: 10.1111/jth.
  36. Du Y, Wang F, Qi H, Ding H, Hou L, Gao Q, et al. Effects of percutaneous lower-extremity arterial interventions on endothelial function and inflammation response in patients with both type 2 diabetes and lower-extremity peripheral arterial disease. Int J Clin Exp Pathol. 2015;8(7):8115-21.
  37. Woodburn KR, Rumley A, Lowe GD, Pollock JG. Fibrinogen and markers of fibrinolysis and endothelial damage following resolution of critical limb ischaemia. Eur J Vasc Endovasc Surg. 1995 Oct;10(3):272-78. doi: 10.1016/S1078-5884(05)80042-5.
  38. Yang H, Xu JX, Kong XZ, Ren ZG, Xia ZY, Qu HQ, et al. Relations between plasma von Willebrand factor or endothelin-1 and restenosis following carotid artery stenting. Med Princ Pract. 2012;21:538-42. doi. 10.1159/000337940.
  39. De Meyer SF, Stoll G, Wagner DD, Kleinschnitz C. von Willebrand factor: an emerging target in stroke therapy. Stroke. 2012 Feb;43(2):599-606. doi: 10.1161/STROKEAHA.111.628867.
  40. Yildiz SY, Kuru P, Oner ET, Agirbasli M. Functional stability of plasminogen activator inhibitor-1. Sci World J. 2014;2014:858293. doi: 10.1155/2014/858293.
  41. Nikolopoulos GK, Bagos PG, Tsangaris I, Tsiara CG, Kopterides P, Vaiopoulos A, et al. The association between plasminogen activator inhibitor type 1 (PAI-1) levels, PAI-1 4G/5G polymorphism, and myocardial infarction: a Mendelian randomization meta-analysis. Clin Chem Lab Med. 2014 Jul;52(7):937-50. doi: 10.1515/cclm-2013-1124.
  42. Mota AP, de Castro Santos ME, Lima e Silva Fd, de Carvalho Schachnik NC, de Oliveira Sousa M, das Gracas Carvalho M. Hypercoagulability markers in patients with peripheral arterial disease: association to ankle-brachial index. Angiology. 2009 Oct-Nov;60(5):529-35. doi: 10.1177/0003319708325444.
  43. Björck M, Lepkowska Eriksson M, Bylockd A, Steuer J, Wanhainen A, Carlsson BCL, et al. Plasminogen activator inhibitor-1 levels and activity decrease after intervention in patients with critical limb ischaemia. Eur J Vasc Endovasc Surg. 2013 Aug;46(2):214-22.
  44. Rayt HS, Merker L, Davies RS. Coagulation, fibrinolysis, and platelet activation following open surgical or percutaneous angioplasty revascularization for symptomatic lower limb chronic ischemia. Vasc Endovasc Surg. 2016 Apr;50(3):193-201. doi: 10.1177/1538574416638759.
  45. Kotschy D, Kotschy M, Socha P, Masłowski L, Kwapisz J, Żuk N, et al. Selected endothelial hemostatic markers in patients with peripheral arterial disease after endovascular revascularization and restenosis formation. Postepy Hig Med Dosw (Online). 2015 Aug 11;69:905-12. [Article in Polish]
  46. Makatsariia AD, Abramian RA, Khizroeva DKh, Abramian GR, Abramian RR. Sistema proteina C i patologicheskie sostoianiia organizma, v chastnosti v akusherskoi praktike [Protein C system and pathological conditions of the body, in particular in obstetrical practice]. Med Nauka Armenii NAN RA. 2013;LIII(4):8-20.
  47. Mahmoodi BK, Brouwer JL, Veeger NJ, van der Meer J. Hereditary deficiency of protein C or protein S confers increased risk of arterial thromboembolic events at a young age: results from a large family cohort study. Circulation. 2008 Oct 14;118(16):1659-67. doi: 10.1161/CIRCULATIONAHA.108.780759.
  48. Komai H, Juri M. Impact of reduced endogenous anti-coagulation protein activity on vascular events of peripheral arterial disease. Int Angiol. 2009 Apr;28(2):138-43.
  49. Komai H, Shindo S, Sato M, Ogino H. Reduced protein c activity might be associated with progression of peripheral arterial disease. Angiology. 2015 Jul;66(6):584-87. doi: 10.1177/0003319714544946.
  50. Curi MA, Skelly CL, Baldwin ZK, Woo DH, Baron JM, Desai TR, et al. Long-term outcome of infrainguinal bypass grafting in patients with serologically proven hypercoagulability. J Vasc Surg. 2003 Feb;37(2):301-6.
Address for correspondence:
390026, Russian Federation,
Ryazan, Vyisokovoltnaya str., 9,
FSBEE HE Ryazan State Medical University
named after Academician I.P. Pavlov
Department of Cardiovascular,
X-ray Endovascular, Operative Surgery
and Topographic Anatomy,
tel.: +7 4912 46-08-03,
e-mail: Suchkov_med@mail.ru
Igor A. Suchkov
Information about the authors:
Kalinin R.E., MD, Professor, Rector, Head of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery and Topographic Anatomy of FSBEE HE Ryazan State Medical University named after Academician I.P. Pavlov.
Suchkov I.A., MD, Associate Professor, Vice-rector for research and innovative development, Professor of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery and Topographic Anatomy of FSBEE HE Ryazan State Medical University named after Academician I.P. Pavlov.
Mzhavanadze N.D., PhD, Assistant of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery and Topographic Anatomy of FSBEE HE Ryazan State Medical University named after Academician I.P. Pavlov.
Klimentova E.A., Post-Graduate of the Department of Cardiovascular, X-ray Endovascular, Operative Surgery and Topographic Anatomy of FSBEE HE Ryazan State Medical University named after Academician I.P. Pavlov.
Isakov S.A., MD, Professor of the Department of Dermato-Venerology of FSBEE HE Ryazan State Medical University named after Academician I.P. Pavlov.
Ryabkov A.N., MD, Associate Professor of the Department of Pharmacology with the Course of Pharmacy of FSBEE HE Ryazan State Medical University named after Academician I.P. Pavlov.
Voronin R.M., MD, Professor of the Department of Mobilization Training of Public Health and Disaster Medicine of FSBEE HE Ryazan State Medical University named after Academician I.P. Pavlov.
Contacts | ©Vitebsk State Medical University, 2007-2023