Novosti
Khirurgii
This journal is
indexed in Scopus









Year 2021 Vol. 29 No 3

REVIEWS

DOI: https://dx.doi.org/10.18484/2305-0047.2021.3.334   |  

A.V. KADOMTSEVA, P.A. ZARUBENKO, L.B. LOGINOVA

THE ROLE OF IMMOBILIZED METAL-ORGANIC COMPOUNDS IN THE COMPLEX TREATMENT OF PURULENT-INFLAMMATORY DISEASE OF SKIN AND SOFT TISSUES

Privolzhsky Research Medical University, Nizhny Novgorod,
Russian Federation

Objective. To study the current Russian and foreign literature dedicated to the problem of application of organometallic compounds immobilized on drug delivery in the treatment of purulent-inflammatory disease of the skin and soft tissues.
Methods. The modern Russian and foreign literature, available in the Pubmed, Medline, Springer, Scopus, e-LIBRARY databases were reviewed according to the problems of purulent-inflammatory diseases, skin and soft tissue infections, the integrated approach to the treatment of purulent-inflammatory diseases, synthesis, immobilized organometallic compounds.
Results. The observational study of the specific recent achievements in the modification of antimicrobial biomaterials is presented. Metal ions have a broad range of antimicrobial activity (especially on proliferation and remodeling), possess by bacteriostatic and bactericidal effect, demonstrate multiple inhibitory effects against bacterial strains and have been proven effective in improving wound healing in all its phases. Natural products and especially biologically active metals such as silver, copper, zinc and germanium, are believed to be an alternative for the development of perspective biomaterials with antimicrobial properties. In recent years, new approach for the production and application of therapeutic and diagnostic drugs based on the immobilization or grafting of drug substances on polymer carriers has been developed. At present, namely the immobilized compounds that have opened the way to the creation of prolonged-action drugs with low toxicity and allergenicity.
Conclusion. Template synthesis of new organometallic drug compounds is considered to be a promising direction in the wound infection treatment, which requires further experimental and clinical study.

Keywords: purulent-inflammatory processes, organometallic frameworks, nanoparticles, immobilized compounds, biometals, synthesis
p. 334-346 of the original issue
References
  1. Ostapiuk L. Analysis of the Risk Factors of the Development of Purulent-Inflammatory Diseases. Online Journal of Gynecology and Reproductive Medicine. 2020;1(1):1-3.
  2. Stevens DL, Bryant AE. Necrotizing Soft-Tissue Infections. N Engl J Med. 2017 Dec 7;377(23):2253-65. doi: 10.1056/NEJMra1600673
  3. Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R, Car J. The humanistic and economic burden of chronic wounds: a protocol for a systematic review. Syst Rev. 2017;6:15. Published online 2017 Jan 24. doi: 10.1186/s13643-016-0400-8
  4. Tretyakov AA, Pelrov SV, Neverov AN, Shchetinin AF. Treatment of Purulent Wounds. Novosti Khirurgii. 2015 Nov-Dec; Vol 23 (6):680-87. (In Russ.)
  5. Hua C, Sbidian E, Hemery F, Decousser JW, Bosc R, Amathieu R, Rahmouni A, Wolkenstein P, Valeyrie-Allanore L, Brun-Buisson C, de Prost N, Chosidow O. Prognostic factors in necrotizing soft-tissue infections (NSTI): A cohort study. J Am Acad Dermatol. 2015 Dec;73(6):1006-12.e8. doi: 10.1016/j.jaad.2015.08.054
  6. Yamamoto L.G. Treatment of Skin and Soft Tissue Infections. Pediatr Emerg Care. 2017 Jan;33(1):49-55. doi: 10.1097/PEC.0000000000001001
  7. Kadomtsev AV, Zhdanovich IV, Piskunov MS, Lineva AN, Novikova AN, Loginov PA. Assessment of toxicity of germanium coordination compounds. Toxicological Review. 2019;(2):16-21. doi: 10.36946/0869-7922-2019-2-16-21 (In Russ.)
  8. Hadeed GJ, Smith J, OKeeffe T, Kulvatunyou N, Wynne JL, Joseph B, Friese RS, Wachtel TL, Rhee PM, El-Menyar A, Latifi R. Early surgical intervention and its impact on patients presenting with necrotizing soft tissue infections: A single academic center experience. J Emerg Trauma Shock. 2016 Jan-Mar;9(1):22-27. doi: 10.4103/0974-2700.173868
  9. Chhabra S, Chhabra N, Kaur A, Gupta N. Wound Healing Concepts in Clinical Practice of OMFS. J Maxillofac Oral Surg. 2017 Dec;16(4):403-423. doi: 10.1007/s12663-016-0880-z
  10. Shaprynskyi VO, Rymsha OV, Mitiuk BO, Vovk IM, Nazarchuk SA, Khodakivskyi MA, Ivanova MO. Investigation of the sensitivity of pathogens of purulent-inflammatory processes of the mediastinum to modern antiseptics. Vsnik Vnnitskogo Natsonalnogo Medichnogo Unversitetu. 2020;24(1):69-74. doi: 10.31393/reports-vnmedical-2020-24(1)-13 (In Russ.)
  11. Abd-El-Aziz AS, Agatemor C, Etkin N. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules. Biomaterials. 2017 Feb;118:27-50. doi: 10.1016/j.biomaterials.2016.12.002
  12. Hassan D, Fasiku VO, Madu SJ, Muazu J. Chapter 6 - Biodegradable Antibiotics in Wound Healing. In: Kokkarachedu V, Kanikireddy V, Sadiku R, editors. Antibiotic Materials in Healthcare. 1st. Academic Press; 2020. . 93-110. doi: 10.1016/B978-0-12-820054-4.00006-9
  13. Kosmala K, Szymańska R. Nanoczastki tlenku tytanu (IV). Otrzymywanie, własciwosci i zastosowanie. Kosmos. 2016;65(2):235-45. http://kosmos.icm.edu.pl/PDF/2016/235.pdf
  14. Bari SS, Mishra S. Chapter 23 - Recent Advances in nanostructured polymer composites for biomedical applications. In: Swain SK, Jawaid M, editors. Nanostructured polymer composites for biomedical applications. 2019 Elsevier Inc; 2019. . 489-506. doi: 10.1016/B978-0-12-816771-7.00024-7
  15. Han J, Zhao D, Li D, Wang X, Jin Z, Zhao K. Polymer-based nanomaterials and applications for vaccines and drugs. Polymers (Basel). 2018 Jan;10(1):31. Published online 2018 Jan 2. doi: 10.3390/polym10010031
  16. Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev. 2019 Jun;146:209-39. doi: 10.1016/j.addr.2018.12.014
  17. Lin CY, Lin SJ, Yang YC, Wang DY, Cheng HF, Yeh MK. Biodegradable polymeric microsphere-based vaccines and their applications in infectious diseases. Hum Vaccin Immunother. 2015 Mar;11(3):650-56. doi: 10.1080/21645515.2015.1009345
  18. Fumakia M, Ho EA. Nanoparticles encapsulated with LL37 and serpin A1 promotes wound healing and synergistically enhances antibacterial activity. Mol Pharm. 2016 Jul 5;13(7):2318-31. doi: 10.1021/acs.molpharmaceut.6b00099
  19. Kalita S, Kandimalla R, Devi B, Kalita B, Kalita K, Deka M, Kataki AC, Sharmaf A, Kotoky J. Dual delivery of chloramphenicol and essential oil by poly-ε-caprolactonePluronic nanocapsules to treat MRSA-Candida co-infected chronic burn wounds. RSC Advances. 2017;7(3):1749-58. doi: 10.1039/c6ra26561h
  20. Pereira GG, Detoni CB, Balducci AG, Rondelli V, Colombo P, Guterres SS, Sonvico F. Hyaluronate nanoparticles included in polymer films for the prolonged release of vitamin E for the management of skin wounds. Eur J Pharm Sci. 2016 Feb 15;83:203-11. doi: 10.1016/j.ejps.2016.01.002
  21. Patrulea V, Laurent-Applegate LA, Ostafe V, Borchard G, Jordan O. Polyelectrolyte nanocomplexes based on chitosan derivatives for wound healing application. Eur J Pharm Biopharm. 2019 Jul;140:100-108. doi: 10.1016/j.ejpb.2019.05.009
  22. Oyarzun-Ampuero F, Vidal A, Concha M, Morales J, Orellana S, Moreno-Villoslada I. Nanoparticles for the treatment of wounds. Curr Pharm Des. 2015;21(29):4329-41. doi: 10.2174/1381612821666150901104601
  23. Yu Y, Chen G, Guo J, Liu Y, Ren J, Kong T, Zhao Y. Vitamin metalorganic framework-laden microfibers from microfluidics for wound healing. Materials Horizons. 2018;5(6):1137-42. doi: 10.1039/C8MH00647D
  24. Alavijeh RK, Beheshti S, Akhbari K, Morsali A. Investigation of reasons for metal-organic frameworks antibacterial activities. Polyhedron. 2018 Dec 1;156:257-78. doi: 10.1016/j.poly.2018.09.028
  25. Cai W, Wang J, Chu C, Chen W, Wu C, Liu G. Metal-organic framework-based stimuli-responsive systems for drug delivery. Adv Sci (Weinh). 2018 Nov 20;6(1):1801526. doi: 10.1002/advs.201801526. eCollection 2019 Jan 9.
  26. Dovnar RI, Smotrin SM, Vasilkov AIu, Zhmakin AI. Antibakterialnyi i protivomikrobnyi effekt pereviazachnogo materiala, soderzhashchego nanochastitsy serebra. Novosti Khirurgii. 2010;18(6):3-11. http://www.surgery.by/pdf/full_text/2010_6_1_ft.pdf (In Russ.)
  27. Ximing G, Bin G, Yuanlin W, Shuanghong G. Preparation of spherical metal-organic frameworks encapsulating ag nanoparticles and study on its antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2017 Nov 1;80:698-707. doi: 10.1016/j.msec.2017.07.027
  28. Shakya S, He Y, Ren X, Guo T, Maharjan A, Luo T, Wang T, Dhakhwa R, Regmi B, Li H, Gref R, Zhang J. Ultrafine silver nanoparticles embedded in cyclodextrin metal-organic frameworks with GRGDS functionalization to promote antibacterial and wound healing application. Small. 2019;15(27):e1901065. doi: 10.1002/smll.201901065
  29. Medici S, Peana M, Crisponi G, Nurchi VM, Lachowicz JI, Remelli M, Zoroddu MA, Remelli M. Silver coordination compounds: A new horizon in medicine. Coord Chem Rev. 2016;327:349-59. https://www.academia.edu/30868765/Silver_coordination_ compounds_A_new_horizon_in_medicine
  30. Shi G, Chen W, Zhang Y, Dai X, Zhang X, Wu Z. An Antifouling hydrogel containing silver nanoparticles for modulating the therapeutic immune response in chronic wound healing. Langmuir. 2019 Feb 5;35(5):1837-45. doi: 10.1021/acs.langmuir.8b01834
  31. Mofidfar M, Kim ES, Larkin EL, Long L, Jennings WD, Ahadian S, Ghannoum MA, Wnek GE. Antimicrobial Activity of Silver Containing Crosslinked Poly (Acrylic Acid) Fibers. Micromachines (Basel). 2019 Nov 28;10(12):829. doi: 10.3390/mi10120829
  32. Sheta SM, El-Sheikh SM, Abd-Elzaher MM. Simple synthesis of novel copper metal-organic framework nanoparticles: biosensing and biological applications. Dalton Trans. 2018 Apr 3;47(14):4847-55. doi: 10.1039/c8dt00371h
  33. Jo JH, Kim HC, Huh S, Kim Y, Lee DN. Antibacterial activities of Cu-MOFs containing glutarates and bipyridyl ligands. Dalton Trans.2019;48(23):8084-93. doi: 10.1039/c9dt00791a
  34. Ren X, Yang C, Zhang L, Li S, Shi S, Wang R, Zhang X, Yue T, Sun J, Wang J. Copper metal-organic frameworks loaded on chitosan film for the efficient inhibition of bacteria and local infection therapy. Nanoscale. 2019;11(24):11830-838. doi: 10.1039/c9nr03612A
  35. Ashfaq M, Verma N, Khan S. Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:938-47. doi: 10.1016/j.msec.2015.10.079
  36. Tamames-Tabar C, Imbuluzqueta E, Guillou N, Serre C, Miller SR, Elkaïm E, Horcajada , Blanco-Prieto MJ. A Zn azelate MOF: combining antibacterial effect. Cryst Eng Comm. 2015;17:456-62. doi: 10.1039/C4CE00885E
  37. Gutha Y, Pathak JL, Zhang W, Zhang Y, Jiao X. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int J Biol Macromol. 2017 Oct;103:234-41. doi: 10.1016/j.ijbiomac.2017.05.020
  38. Straccia MC, dAyala GG, Romano I, Laurienzo P. Novel zinc alginate hydrogels prepared by internal setting method with intrinsic antibacterial activity. Carbohydr Polym. 2015 Jul 10;125:103-12. doi: 10.1016/j.carbpol.2015.03.010
  39. Haugen HJ, Lyngstadaas SP. Antibacterial effects of titanium dioxide in wounds. In: Ågren MS, ed. Wound healing biomaterials Vol. 2. 1st ed. Woodhead Publishing; 2016. . 439-50. doi: 10.1016/B978-1-78242-456-7.00021-0
  40. Verma R, Chaudhary V, Nain L, Srivastava AK. Antibacterial characteristics of TiO2 nano-objects and their interaction with biofilm. Mater Technol. 2017;32(6):385-90. doi: 10.1080/10667857.2016.1236515
  41. Gerber GB, Léonard A. Mutagenicity, carcinogenicity and teratogenicity of germanium compounds. Mutat Res. 1997 Dec;387(3):141-46. doi: 10.1016/s1383-5742(97)00034-3
  42. Vereshchagina IaA, Alimova AZ, Chachkov DV, Ishmaeva EA , Kochina TA. Poliarnost i stroenie 1,1-digalogeno-2, 8-dioksa-5-azagermokanov. Zhurn Organ Khimii. 2015;51(5):765-66. http://www.chachkov.ru/mediawiki/images /c/c3/Russian_Journal_of_Organic_Chemistry-2015_N5_Vereshchagina_ru.pdf (In Russ.)
  43. Unakar NJ, Tsui J, Johnson M. Effect of pretreatment of germanium-132 on Na(+)-K(+)-ATPase and galactose cataracts. Curr Eye Res. 1997 Aug;16(8):832-37. doi: 10.1076/ceyr.16.8.832.8980
  44. Ogwapit S.M. Analysis of Ge-132 and development of a simple oral anticancer formulation. Biosci Horiz. 2011 Jun;4(2):128-39. doi: 10.1093/biohorizons/hzr015
  45. Nazarov EA, Kuzmanin SA. O nekotorykh bioaktivnykh pokrytiiakh implantatov. Ros Med-Biol Vestn im Akad IP Pavlova. 2016;24(1):149-54. doi: 10.17816/PAVLOVJ20161149-154 (In Russ.)
  46. Slawson RM, Van Dyke MI, Lee H, Trevors JT. Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid. 1992 Jan;27(1):72-79. doi: 10.1016/0147-619x(92)90008-x
  47. Ukolova NY, Surkichin SI, Matel SK, Isaev AD, Ambrosov IV, Dirsh AV. Organogermanic peels: application method and efficacy evaluation. Klin Dermatologiia i Venerologiia. 2017;16(1):49-56. doi: 10.17116/klinderma201716149-56 (In Russ.)
  48. Ukolova NY, Matel SK, Isaev AD, Ambrosov IV, Dirsh AV, Kostkina EA. Innovative intradermal implants other drugs containing the germanium-organic complex: methods of injection and effects on various skin layers. Klin Dermatologiia i Venerologiia. 2018;17(5):151-57. doi: 10.17116/klinderma201817051151 (In Russ.)
  49. Tymchyshin OL. Hepatoprotective activity of a new germanium-organic biologically active substance (medgerm) in experimental hepatitis. Kazan Med Zhurn. 2013;94(5):628-32. doi: 10.17816/KMJ1905 (In Russ.)
  50. Karal-ogly D.D, Agrba V Z, Lavrenteva IN, Ambrosov IV, Matelo S K, Chuguev YuP, Gvaramiya IA, Gvozdik TE, Mukhametzyanova E I. Physiological parameters of Macaca Fascicularis immunized with anti-rubella vaccine with germanium-based adjuvants. Vestn Eksperim Biologii i Meditsiny. 2014;157(1):81-84. doi: 10.1007/s10517-014-2497-x (In Russ.)
  51. Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. Lupus. 2012 Feb;21(2):223-30. doi: 10.1177/0961203311430221
  52. Wang QM, Huang RQ. Synthesis and biological activity of novel N-tert-butyl-N,N-substitutedbenzoylhydrazines containing 2-methyl-3-(triphenylgermanyl) propoxycarbony. Appl Organometal Chem. 2002;16(10):593-96. doi: 10.1002/aoc.351
  53. Swami M, Singh RV. Sulfur-Bonded Organogermanium (IV) Complexes of Biopotent Bases and Their Antiandrogen and Biocidal Properties. Phosphorus Sulfur Silicon Relat Elem. 2008;183(6):1350-64. doi: 10.1080/10426500701641452
  54. Feng C, Ouyang J, Tang Z, Kong N, Liu Y, Fu L, Ji X, Xie T, Farokhzad OC, Tao W. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter. 2020 Jul;3(1):127-44. doi: 10.1016/j.matt.2020.04.022
Address for correspondence:
603950, Russian Federation,
Nizhny Novgorod, Minin Square, 10/1,
Privolzhsky Research Medical University,
General Chemistry Department,
tel. +7(910)872-41-51,
e-mail: kadomtseva@pimunn.ru,
Kadomtseva Alena V.
Information about the authors:
Kadomtseva Alena V., PhD, Senior Lecturer of the General Chemistry Department, Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation.
http://orcid.org/0000-0002-6962-0625
Loginova Lyubov B., Head of the Laboratory of the General Chemistry Department, Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation.
https://orcid.org/0000-0002-4917-2802
Zarubenko Polina A., Assistant of the General, Operative Surgery and Topographic Anatomy Named after A.I.Kozhevnikov, Privolzhsky Research Medical University, Nizhny Novgorod, Russian Federation.
https://orcid.org/0000-0001-7288-8625
Contacts | ©Vitebsk State Medical University, 2007