Year 2019 Vol. 27 No 2

ANESTESIOLOGY-REANIMATOLOGY

V.YU. ZIAMKO 1, V.K. OKULICH 1, A.M. DZYADZKO 2

FACTORS OF PHENOTYPIC AND GENOTYPIC RESISTANCE OF THE MOST PROBLEMATIC INFECTIOUS AGENTS IN INTENSIVE CARE UNIT

Vitebsk State Medical University 1, Vitebsk,
Minsk Scientific and Practical Center of Surgery, Transplantation and Hematology 2, Minsk,
The Republic of Belarus

Objective. To establish factors of phenotypic and genotypic resistance of the most problematic infectious agents in the intensive care unit.
Methods. A comprehensive examination of 224 clinical isolates from the sputum of 99 patients in the intensive care unit was performed. Carbapenemase genes in Klebsiella pneumonia isolates were detected by real-time polymerase chain reaction and minimum inhibitory concentrations of antibiotics for microorganisms were determined in planktonic form and biofilm form by the method of double serial dilutions.
Results. In the structure of the studied isolates the most common were Acinetobacter spp. (32.6%), Klebsiella pneumonia (33.5%), Pseudomonas aeruginosa (14.7%). 91.4% of Klebsiella pneumoniae isolates possessed genes of resistance and in most cases – OXA-48 (80%). All the studied isolates moderately or well formed the biofilm, among the studied microorganisms Proteus mirabilis demonstrated this ability best of all. All isolates both in plankton form and in the form of biofilm were sensitive to tigecycline (100%) and resistant to carbapenems in 94.7%, to cephalosporins – in 100% of cases. For 90% of the studied isolates the minimum inhibitory concentration for tigecycline and ciprofloxacin in the biofilm does not change and increases for moxifloxacin in 1.3 times, for meropenem – 1.2 times.
Conclusions. The factors of phenotypic and genotypic resistance of the most problematic infectious agents in the intensive care unit have been established. Most of the carbapenemresistant Klebsiella pneumoniae isolates (88.5%) had gene associations: OXA-48 and CTX-M (37.1%), NDM and CTX-M (2.9%), NDM and OXA-48 (37.1%), CTX-M and OXA-48 (11.4%). The identification of resistance genes that determine the synthesis of carbapenemazes and cefalosporinazes eliminates the antibiotics that are destroyed by these enzymes from the algorithms of antibacterial therapy.

Keywords: antibiotic resistance, Klebsiella pneumoniae, Acinetobacter spp., Pseudomonas aeruginosa, biofilm formation, resistance genes
p. 188-195 of the original issue
References
  1. Mukhopadhyay C. Infection Control in Intensive Care Units. Indian J Respir Care. 2018;(7):14-21. doi: 10.4103/ijrc.ijrc_9_17
  2. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest. 2000 Jul;118(1):146-55. doi: 10.1378/chest.118.1.146
  3. Yakovlev SV, Suvorova MP, Beloborodov VB, Basin EE, Eliseev EV, Kovelenov SV, Porthyagina US, Rog AA, Rudnov VA, Barkanova ON. Multicentre study of the prevalence and clinical value of hospital-acquired infections in emergency hospitals of Russia: ergini study. Antibiotiki i Khimioterapiia. 2016;61(5-6):32-42. https://cyberleninka.ru/article/n/rasprostranyonnost-i-klinicheskoe-znachenie-nozokomialnyh-infektsiy-v-lechebnyh-uchrezhdeniyah-rossii-issledovanie-ergini (in Russ.)
  4. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Kumar A, Simon D, Peters C, Ahsan M, Chateau D. Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest. 2009 Nov;136(5):1237-48. doi: 10.1378/chest.09-0087
  5. Zubkov MN. Rol’ karbapenemov v usloviiakh eskalatsii antibiotikorezistentnosti gramotritsatel’nykh bakterii. RMZh. 2008;16(2): 106-12. https://www.rmj.ru/articles/antibiotiki/Roly_karbapenemov_v_usloviyah_eskalacii_antibiotikorezistentnosti_gramotricatelynyh_bakteriy/#ixzz5idYgvUxm (in Russ.)
  6. Zemko VYu, Okulich VK, Dzvadz‘kcr AM. Monitoring the antibiotic resistance in the intensive care unit of a multidisciplinary hospital. Transplantologiia. 2018;10(4):284-97. doi: 10.23873/2074-0506-2018-10-4-284-297 (in Russ.)
  7. Lazareva IV. Ageevets VA, Ershova TA, Zueva LP, Goncharov AE, Darina MG, Svetlichnaya YuS, Uskov AN, Sidorenko SV. Prevalence and antibiotic resistance of carbapenemase-producing gram-negative bacteria in Saint-Petersburg and some other regions of the Russian Federation. Antibiotiki i Khimioterapiia. 2016;61:11-12. https://cyberleninka.ru/article/v/rasprostranenie-i-antibakterialnaya-rezistentnost-gramotritsatelnyh-bakteriy-produtsentov-karbapenemaz-v-sankt-peterburge-i (in Russ.)
  8. Vorobey ES, Voronkova ОS, Vinnikov AI. Bacterial biof1lms. “Bacteria quorum” sensing in biofilms. Visnik Dnipropetrovs’kogo universitetu. Biologiia. Ekologiia. 2012;20 (1):13-22. https://cyberleninka.ru/article/n/bakterialnye-bioplenki-quorum-sensing-chuvstvo-kvoruma-u-bakteriy-v-bioplenkah (in Ukr.)
  9. Glushanova NA, Blinov AI, Alekseeva NB. Bacterial biofilms in human infectious pathology. Meditsina v Kuzbasse. 2015:30-35. https://cyberleninka.ru/article/n/bakterialnye-bioplenki-v-infektsionnoy-patologii-cheloveka (in Russ.)
  10. Lopukhov LV, Edelstein MV. Polymerase chain reaction in diagnostic clinical microbiology. Klin Mikrobiologiia i Antimikrobnaia Khimioterapiia. 2000;4(2):96-106. http://www.antibiotic.ru/cmac/2000_2_3/096.htm (in Russ.)
  11. Kolomiets ND, Tonko OV, Serookaia TI, Mareiko AM, Litunovskaia LG, Ermakova GS, Kolodkina VL, Sergeichik NL, Levshina NN, Slavinskaia AA, Tochko NI, Voitik SB, Novomliianova LV, Shitikova PV, Kliuiko NL, Kulichkovskaia IV. Mikrobiologicheskie metody issledovaniia biologicheskogo materiala: instruktsiia po primeneniiu; № 075-0210. Minsk, RB: Dikta; 2010; 75 p. http://gocb.by/assets/files/methodical/LS/75-0210.pdf (in Russ.)
  12. Okulich VK, Kabanova AA, Plotnikov FV. Mikrobnye bioplenki v klinicheskoi mikrobiologii i antibakterial’noi terapii: monogr. Vitebsk, RB; 2017. 300 p. http://elib.vsmu.by/handle/123/12846 (in Russ.)
  13. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 8.1, 2018. http://www.eucast.org
  14. Hamprecht A, Gottig S. Treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Curr Treat Options Infect Dis. 2014;6(4):425-38. doi: 10.1007/s40506-014-0029-x
  15. Saini R, Saini S, Sharma S. Biofilm: A dental microbial infection. J Nat Sci Biol Med. 2011 Jan-Jun;2(1):71-75. doi: 10.4103/0976-9668.82317
Address for correspondence:
210009, The Republic of Belarus,
Vitebsk, Frunze Avenue, 27а,
Vitebsk State Medical University,
Department of Anesthesiology and Resuscitation
With a Course of the Faculty of the Advanced
Training and Retraining of Specialists.
Tel. mobile +375291460799,
e-mail: torinet@tut.by,
Viktoryia Yu. Ziamko
Information about the authors:
Ziamko Viktoryia Yu., Post-Graduate Student of the Department of Anesthesiology and Resuscitation with a Course of the Faculty of the Advanced Training and Retraining of Specialists, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0002-6753-2074
Okulich Vitaly K., PhD, Associate Professor of the Clinical Microbiology Department, Vitebsk State Medical University, Vitebsk, Republic of Belarus.
https://orcid.org/0000-0002-8226-6405
Dzyadzko Alexander M., MD, Head of the Intensive Care Unit, Minsk Scientific and Practical Center of Surgery, Transplantation and Hematology, Minsk, Republic of Belarus.
https://orcid.org/0000-0003-1965-1850
Contacts | ©Vitebsk State Medical University, 2007-2023